A careful analysis of low-frequency seismic events on Soufrièere Hills volcano, Montserrat, points to a source mechanism that is non-destructive, repetitive, and has a stationary source location. By combining these seismological clues with new field evidence and numerical magma flow modelling, we propose a seismic trigger model which is based on brittle failure of magma in the glass transition. Loss of heat and gas from the magma results in a strong viscosity gradient across a dyke or conduit. This leads to a buildup of shear stress near the conduit wall where magma can rupture in a brittle manner, as field evidence from a rhyolitic dyke demonstrates. This brittle failure provides seismic energy, the majority of which is trapped in the conduit or dyke forming the lowfrequency coda of the observed seismic signal. The trigger source location marks the transition from ductile conduit flow to friction-controlled magma ascent. As the trigger mechanism is governed by the depth-dependent magma parameters, the source location remains fixed at a depth where the conditions allow brittle failure. This is reflected in the fixed seismic source locations.
Dome-forming volcanoes are among the most hazardous volcanoes on Earth. Magmatic outgassing can be hindered if the permeability of a lava dome is reduced, promoting pore pressure augmentation and explosive behaviour. Laboratory data show that acid-sulphate alteration, common to volcanoes worldwide, can reduce the permeability on the sample lengthscale by up to four orders of magnitude and is the result of pore- and microfracture-filling mineral precipitation. Calculations using these data demonstrate that intense alteration can reduce the equivalent permeability of a dome by two orders of magnitude, which we show using numerical modelling to be sufficient to increase pore pressure. The fragmentation criterion shows that the predicted pore pressure increase is capable of fragmenting the majority of dome-forming materials, thus promoting explosive volcanism. It is crucial that hydrothermal alteration, which develops over months to years, is monitored at dome-forming volcanoes and is incorporated into real-time hazard assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.