The Mary Kathleen Fold Belt in northeastern Australia consists of highly deformed, Mid-Proterozoic sedimentary and volcanic sequences as well as intrusives, which were metamorphosed under low-pressure, high-temperature conditions. In the light of current controversy on tectono-thermal settings of low-pressure metamorphic terrains, the interrelations of progressive deformation and metamorphism have been closely examined. Remarkably, there is no direct evidence for syn-metamorphic extensional deformation nor is any significant intrusive activity recorded.Syn-metamorphic structures indicate lateral, bulk coaxial shortening of at least 50–60%. Tight upright folds, pervasive axial planar fabrics, undulating fold axes, and a vertical mineral lineation characterize this deformation. The metamorphic textures, particularly those in andalusite- and/or cordierite-bearing schists, reveal the sequential growth of metamorphic minerals that was synchronous with progressively increasing bulk rock strain. The corresponding metamorphic reactions constrain a prograde P–T path segment that crossed the andalusite and sillimanite stability fields while temperature and pressure increased. After reaching the metamorphic peak, the region cooled down near-isobarically, before major decompression occurred. The prograde–retrograde P–T path forms a complete anticlockwise loop.Due to the lack of evidence for crustal thinning and large-scale magmatism in the upper crust, alternative models are discussed in order to explain the transient high geothermal gradient. These are in particular convective thinning of the lithospheric mantle and fast decompression of crustal sections, possibly linked to tectonic processes preceeding the low-pressure/high-temperature orogenic event.
Cordierite-anthophyllite rocks and related cordierite-rich, talc-rich and chloriterich rocks occur in the Rosebud Syncline, north-west Queensland, Australia, as part of a Proterozoic metasedimentary sequence. Field relations and rock compositions attest the sedimentary origin of these rather unusual metamorphic rocks. Their chemical composition is comparable to that of unmetamorphosed, alkali-and Ca-poor pelites, which are associated with some evaporite deposits.Other occurrences of cordierite-anthophyllite rocks have commonly been interpreted as metamorphosed chloritic alteration products derived from mafic or felsic volcanics. A comparative chemical study, using analyses of cordierite-anthophyllite rocks from such alteration zones and analyses of unmetamorphosed magnesian pelites, demonstrates the general chemical similarity between these two rock groups of entirely different origin. However, distinct differences in major element relations help to distinguish these two genetic groups. Particularly useful are AI2OrFe0-Mg0 plots, in which evaporitic pelites occupy the Fe-poor side.The highly magnesian metamorphic rocks from the Rosebud Syncline fall entirely into the compositional field of evaporitic clays and shales. Furthermore, analyses of relatively immobile trace elements give supporting evidence for the sedimentary origin of these cordierite-anthophyllite rocks. The correlation with trace element ranges of clays and shales is very good. However, the correlation with trace element ranges of mafic and felsic volcanics is poor, and major discrepancies occur with Cr, Ni, Co, Nb, Sc, Th and Ti.Thus, the magnesian metamorphics of the Rosebud Syncline appear to be derived from evaporitic clays rich in magnesian clay minerals, such as palygorskite, sepiolite, chlorite or corrensite. The complete metamorphic rock assemblage of interlayered calcareous, aluminous and magnesian rocks is interpreted as a metamorphosed carbonate-evaporite-pelite sequence.
Sil TIC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.