We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 cases and 64,762 controls of European descent, followed by genotyping of top association signals in 60,738 additional individuals. This genomic analysis identified 13 novel loci harboring one or more SNPs that were associated with CAD at P<5×10−8 and confirmed the association of 10 of 12 previously reported CAD loci. The 13 novel loci displayed risk allele frequencies ranging from 0.13 to 0.91 and were associated with a 6 to 17 percent increase in the risk of CAD per allele. Notably, only three of the novel loci displayed significant association with traditional CAD risk factors, while the majority lie in gene regions not previously implicated in the pathogenesis of CAD. Finally, five of the novel CAD risk loci appear to have pleiotropic effects, showing strong association with various other human diseases or traits.
SummaryBackgroundHigh plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodified by disease processes, mendelian randomisation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal.MethodsWe performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20 913 myocardial infarction cases, 95 407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12 482 cases of myocardial infarction and 41 331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol.FindingsCarriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher, p=8×10−13) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with non-carriers. This difference in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84–0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88–1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58–0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·68–1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol associated with OR 1·54, 95% CI 1·45–1·63) was concordant with that from genetic score (OR 2·13, 95% CI 1·69–2·69, p=2×10−10).InterpretationSome genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into reductions in risk of myocardial infarction.FundingUS National Institutes of Health, The Wellcome Trust, European Union, British Heart Foundation, and the German Federal Ministry of Education and Research.
Definitions of different pro-, pre-, and synbiotics suggested by different investigators are critically discussed. On the basis of this analysis, the probiotic concept is confined to effects exerted by viable microorganisms but is applicable independent of the site of action and route of administration. It therefore may include sites such as the oral cavity, the intestine, the vagina, and the skin.
Regular consumption of flavonoids may reduce the risk for CVD. However, the effects of individual flavonoids, for example, quercetin, remain unclear. The present study was undertaken to examine the effects of quercetin supplementation on blood pressure, lipid metabolism, markers of oxidative stress, inflammation, and body composition in an at-risk population of ninety-three overweight or obese subjects aged 25-65 years with metabolic syndrome traits. Subjects were randomised to receive 150 mg quercetin/d in a double-blinded, placebo-controlled cross-over trial with 6-week treatment periods separated by a 5-week washout period. Mean fasting plasma quercetin concentrations increased from 71 to 269 nmol/l (P,0·001) during quercetin treatment. In contrast to placebo, quercetin decreased systolic blood pressure (SBP) by 2·6 mmHg (P,0·01) in the entire study group, by 2·9 mmHg (P,0·01) in the subgroup of hypertensive subjects and by 3·7 mmHg (P,0·001) in the subgroup of younger adults aged 25 -50 years. Quercetin decreased serum HDL-cholesterol concentrations (P,0·001), while total cholesterol, TAG and the LDL:HDL-cholesterol and TAG:HDL-cholesterol ratios were unaltered. Quercetin significantly decreased plasma concentrations of atherogenic oxidised LDL, but did not affect TNF-a and C-reactive protein when compared with placebo. Quercetin supplementation had no effects on nutritional status. Blood parameters of liver and kidney function, haematology and serum electrolytes did not reveal any adverse effects of quercetin. In conclusion, quercetin reduced SBP and plasma oxidised LDL concentrations in overweight subjects with a high-CVD risk phenotype. Our findings provide further evidence that quercetin may provide protection against CVD.Quercetin: Blood pressure: Inflammation: Oxidised LDL: CVD Flavonoids in general and quercetin in particular have been associated with a decreased risk for CVD (1) . Furthermore, there was a trend towards a reduction in the incidence of type 2 diabetes mellitus at higher quercetin intakes (2) . In Western populations, the primary dietary sources of quercetin are tea, red wine, fruits and vegetables (3,4) . Quercetin is one of the major flavonoids, ubiquitously distributed in (edible) plants, and one of the most potent antioxidants of plant origin (1) . Numerous biological effects of quercetin, including antioxidant, anti-inflammatory, anti-thrombotic and vasodilatory actions, have been described in vitro (1) . However, quercetin intervention trials in human subjects have so far shown inconclusive and even conflicting results (5) . Quercetin supplementation increased plasma antioxidant capacity, ex vivo resistance of LDL to oxidation and resistance of lymphocyte DNA to strand breakage, but decreased urinary 8-hydroxy-2 0 -deoxyguanosine concentrations (5) . Other human studies, however, failed to confirm effects on these biomarkers (5) . A recent meta-analysis of 133 controlled flavonoid trials (6) suggested that there may be clinically relevant effects of some flavonoids or flavonoid-ri...
Probiotics are nonpathogenic microorganisms that, when ingested, exert a positive influence on the health or physiology of the host. They can influence intestinal physiology either directly or indirectly through modulation of the endogenous ecosystem or immune system. The results that have been shown with a sufficient level of proof to enable probiotics to be used as treatments for gastrointestinal disturbances are 1) the good tolerance of yogurt compared with milk in subjects with primary or secondary lactose maldigestion, 2) the use of Saccharomyces boulardii and Enterococcus faecium SF 68 to prevent or shorten the duration of antibiotic-associated diarrhea, 3) the use of S. boulardii to prevent further recurrence of Clostridium difficile-associated diarrhea, and 4) the use of fermented milks containing Lactobacillus rhamnosus GG to shorten the duration of diarrhea in infants with rotavirus enteritis (and probably also in gastroenteritis of other causes). Effects that are otherwise suggested for diverse probiotics include alleviation of diarrhea of miscellaneous causes; prophylaxis of gastrointestinal infections, which includes traveler's diarrhea; and immunomodulation. Trials of gastrointestinal diseases that involve the ecosystem are currently being performed, eg, Helicobacter pylori infections, inflammatory bowel disease, and colon cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.