A key goal of sediment management is the quantification of suspended sediment load (SSL) in rivers. This research focused on a comparison of different means of suspended sediment estimation in rivers. This includes sediment rating curves (SRC) and soft computing techniques, i.e., local linear regression (LLR), artificial neural networks (ANN) and the wavelet-cum-ANN (WANN) method. Then, different techniques were applied to predict daily SSL at the Pirna and Magdeburg Stations of the Elbe River in Germany. By comparing the results of all the best models, it can be concluded that the soft computing techniques (LLR, ANN and WANN) better predicted the SSL than the SRC method. This is due to the fact that the former employed non-linear techniques for the data series reconstruction. The WANN models were the overall best performer. The WANN models in the testing phase showed a mean R2 of 0.92 and a PBIAS of −0.59%. Additionally, they were able to capture the suspended sediment peaks with greater accuracy. They were more successful as they captured the dynamic features of the non-linear and time-variant suspended sediment load, while other methods used simple raw data. Thus, WANN models could be an efficient technique to simulate the SSL time series because they extract key features embedded in the SSL signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.