Changes in DNA methylation in cancer have been heralded as promising targets for the development of powerful diagnostic, prognostic, and predictive biomarkers. Despite the existence of more than 14,000 scientific publications describing DNA methylation-based biomarkers and their clinical associations in cancer, only 14 of these biomarkers have been translated into a commercially available clinical test. Methodological and experimental obstacles are both major causes of this disparity, but the genomic location of a DNA methylation-based biomarker is an intrinsic and essential property that also has an important and often overlooked role. Here, we examine the importance of the location of DNA methylation for the development of cancer biomarkers, and take a detailed look at the genomic location and other relevant characteristics of the various biomarkers with commercially available tests. We also emphasize the value of publicly available databases for the development of DNA methylation-based biomarkers and the importance of accurate reporting of the full methodological details of research findings.
The canonical Wnt signalling pathway plays a key role during embryogenesis and defects in this pathway have been implicated in the pathogenesis of various types of tumours, including breast cancer. The gene for secreted frizzled-related protein 1 (SFRP1) encodes a soluble Wnt antagonist and is located in a chromosomal region (8p22-p12) that is often deleted in breast cancer. In colon, lung, bladder and ovarian cancer SFRP1 expression is frequently inactivated by promoter methylation. We have previously shown that loss of SFRP1 protein expression is a common event in breast tumours that is associated with poor overall survival in patients with early breast cancer. To investigate the cause of SFRP1 loss in breast cancer, we performed mutation, methylation and expression analysis in human primary breast tumours and breast cell lines. No SFRP1 gene mutations were detected. However, promoter methylation of SFRP1 was frequently observed in both primary breast cancer (61%, n ¼ 130) and cell lines analysed by methylation-specific polymerase chain reaction (MSP). We found a tight correlation (Po0.001) between methylation and loss of SFRP1 expression in primary breast cancer tissue. SFRP1 expression was restored after treatment of tumour cell lines with the demethylating agent 5-aza-2 0 -deoxycytidine. Most interestingly, SFRP1 promoter methylation was an independent factor for adverse patient survival in Kaplan-Meier analysis. Our results indicate that promoter hypermethylation is the predominant mechanism of SFRP1 gene silencing in human breast cancer and that SFRP1 gene inactivation in breast cancer is associated with unfavourable prognosis.
BackgroundTriple-negative breast cancers (TNBC) neither express hormone receptors, nor overexpress HER2. They are associated with poor prognosis, as defined by low five-year survival and high recurrence rates after adjuvant therapy. Overall, TNBC share striking similarities with basal-like breast cancers (BBC), so a number of studies considered them being the same. The purpose of this review is to summarise the latest findings on TNBC concerning its relation and delineation to BBC, discuss the developmental pathways involved and address clinical implications for this complex type of breast cancer.MethodsThe recent literature from PubMed and Medline databases was reviewed.ResultsNot all TNBC are of the intrinsic BBC subtype (nonbasal (NB)-TNBC), nor are all BBC triple-negative (non-triple-negative (NTN)-BBC). There is increasing evidence that a triple-negative, basal-like breast cancer (TNBBC) subtype develops mainly through a BRCA1-related pathway. Somatic mutations that contribute to NTN-BBC and NB-TNBC development are possibly not related to this pathway, but may occur randomly due to increased genomic instability in these tumours. Several therapeutic options exist for TNBBC, which exhibited promising results in recent clinical trials. Cytotoxic therapies, e.g. combined treatment with anthracyclines or taxanes, achieved good tumour regression rates in the neo-adjuvant setting, but also showed considerable recurrence during the first 5 years after therapy. Targeted therapy options involve PARP1 and EGFR inhibition, although both approaches still need further investigation.ConclusionsTNBC and BBC are not the same disease entity. The TNBBC subtype shows the largest homogeneity in terms of tumour development, prognosis and clinical intervention options.
Background: The inter-alpha-trypsin inhibitors (ITI) are a family of plasma protease inhibitors, assembled from a light chain -bikunin, encoded by AMBP -and five homologous heavy chains (encoded by ITIH1, ITIH2, ITIH3, ITIH4, and ITIH5), contributing to extracellular matrix stability by covalent linkage to hyaluronan. So far, ITIH molecules have been shown to play a particularly important role in inflammation and carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.