In this paper we present a vision-based approach to mobile
Observations of the 2007 March 18 occultation of the star P445.3 (2UCAC 25823784; R = 15.3) by Pluto were obtained at high time resolution at five sites across the western United States and reduced to produce light curves for each station using standard aperture photometry. Global models of Pluto's upper atmosphere are fitted simultaneously to all resulting light curves. The results of these model fits indicate that the structure of Pluto's upper atmosphere is essentially unchanged since the previous occultation observed in 2006, leading to a well-constrained measurement of the atmospheric half-light radius at 1291 ± 5 km. These results also confirm that the significant increase in atmospheric pressure detected between 1988 and 2002 has ceased. Inversion of the Multiple Mirror Telescope Observatory light curves with unprecedented signal-to-noise ratios reveals significant oscillations in the number density, pressure, and temperature profiles of Pluto's atmosphere. Detailed analysis of this highest resolution light curve indicates that these variations in Pluto's upper atmospheric structure exhibit a previously unseen oscillatory structure with strong correlations of features among locations separated by almost 1200 km in Pluto's atmosphere. Thus, we conclude that these variations are caused by some form of large-scale atmospheric waves. Interpreting these oscillations as Rossby (planetary) waves allows us to establish an upper limit of less than 3 m s −1 for horizontal wind speeds in the sampled region (radius 1340-1460 km) of Pluto's upper atmosphere.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities are viewed as a first comprehensive assessment of the Observatory's performance and are used to guide future development activities, as well as to identify additional Observatory upgrades. Pointing stability was evaluated, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an active mass damper system installed on the telescope. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have also been performed. Additional tests targeted basic Observatory capabilities and requirements, including pointing accuracy, chopper evaluation and imager sensitivity. This paper reports on the data collected during these flights and presents current SOFIA Observatory performance and characterization.
Context.A stellar occultation by a trans-Neptunian object (TNO) provides an opportunity to probe the size and shape of these distant solar system bodies. In the past seven years, several occultations by TNOs have been observed, but mostly from a single location. Only very few TNOs have been sampled simultaneously from multiple locations. Sufficient data that enable a robust estimation of shadow size through an ellipse fit could only be obtained for two objects. Aims. We present the first observation of an occultation by the TNO 2007 UK 126 on 15 November 2014, measured by three observers, one nearly on and two almost symmetrical to the shadow's centerline. This is the first multi-chord dataset obtained for a so-called detached object, a TNO subgroup with perihelion distances so large that the giant planets have likely not perturbed their orbits. We also revisit Herschel/PACS far-infrared data, applying a new reduction method to improve the accuracy of the measured fluxes. Combining both datasets allows us to comprehensively characterize 2007 UK 126 . Methods. We use error-in-variable regression to solve the non-linear problem of propagating timing errors into uncertainties of the ellipse parameters. Based on the shadow's size and a previously reported rotation period, we expect a shape of a Maclaurin spheroid and derive a geometrically plausible size range. To refine our size estimate of 2007 UK 126 , we model its thermal emission using a thermophysical model code. We conduct a parametric study to predict far-infrared fluxes and compare them to the Herschel/PACS measurements. Results. The favorable geometry of our occultation chords, combined with minimal dead-time imaging, and precise GPS time measurements, allow for an accurate estimation of the shadow size (best-fitting ellipse with axes 645.80 ± 5.68 km × 597.81 ± 12.74 km) and the visual geometric albedo (p V = 15.0 ± 1.6%). By combining our analyses of the occultation and the far-infrared data, we can constrain the effective diameter of 2007 UK 126 to d eff = 599−629 km. We conclude that subsolar surface temperatures are in the order of ≈50−55 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.