We describe a novel genetic screen that is performed by transfecting every individual clone of an expression clone collection into a separate population of cells in a highthroughput mode. We combined high-throughput functional genomics with experimental validation to discover human genes that ameliorate cytotoxic responses of neuronal HT-22 cells upon exposure to oxidative stress. A collection of 5,000 human cDNAs in mammalian expression vectors were individually transfected into HT-22 cells, which were then exposed to H 2 O 2 . Five genes were found that are known to be involved in pathways of detoxification of peroxide (catalase, glutathione peroxidase-1, peroxiredoxin-1, peroxiredoxin-5, and nuclear factor erythroid-derived 2-like 2). The presence of those genes in our "hit list" validates our screening platform. In addition, a set of candidate genes was found that has not been previously described as involved in detoxification of peroxide. One of these genes, which was consistently found to reduce H 2 O 2 -induced toxicity in HT-22, was GFPT2. This gene is expressed at significant levels in the central nervous system (CNS) and encodes glutamine-fructose-6-phosphate transaminase (GFPT) 2, a rate-limiting enzyme in hexosamine biosynthesis. GFPT has recently also been shown to ameliorate the toxicity of methylmercury in Saccharomyces cerevisiae. Methylmercury causes neuronal cell death in part by protein modification as well as enhancing the production of reactive oxygen species (ROS). The protective effect of GFPT2 against H 2 O 2 toxicity in neuronal HT-22 cells may be similar to its protection against methylmercury in yeast. Thus, GFPT appears to be conserved among yeast and men as a critical target of methylmercury and ROS-induced cytotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.