Multiple cis-elements surrounding the β-globin gene locus combine to target this locus to the nuclear periphery through at least two different epigenetic marks.
Background
Traumatic injury can lead to dysregulation of the normal clotting system, resulting in hemorrhagic and thrombotic complications. Platelet activation is robust following traumatic injury and one process of platelet activation is to release of extracellular vesicles (PEV) that carry heterogenous cargo loads and surface ligands.
Objectives
We sought to investigate and characterize the release and function of PEVs generated following traumatic injury.
Methods
PEV content and quantity in circulation following trauma in humans and mice was measured using flow cytometry, size exclusion chromatography, and nanoparticle tracking analysis. PEVs were isolated from circulation and the effects on thrombin generation, bleeding time, hemorrhage control, and thrombus formation were determined. Finally, the effect of hydroxychloroquine (HCQ) on PEV release and thrombosis were examined.
Results
Human and murine trauma results in a significant release of PEVs into circulation compared with healthy controls. These PEVs result in abundant thrombin generation, increased platelet aggregation, decreased bleeding times, and decreased hemorrhage in uncontrolled bleeding. Conversely, PEVs contributed to enhanced venous thrombus formation and were recruited to the developing thrombus site. Interestingly, HCQ treatment resulted in decreased platelet aggregation, decreased PEV release, and reduced deep vein thrombosis burden in mice.
Conclusions
These data demonstrate that trauma results in significant release of PEVs which are both pro‐hemostatic and pro‐thrombotic. The effects of PEVs can be mitigated by treatment with HCQ, suggesting the potential use as a form of deep vein thrombosis prophylaxis.
Treatment of bleeding disorders using transfusion of donor-derived platelets faces logistical challenges due to their limited availability, high risk of contamination, and short (5 to 7 days) shelf life. These challenges could be potentially addressed by designing platelet mimetics that emulate the adhesion, aggregation, and procoagulant functions of platelets. To this end, we created liposome-based platelet-mimicking procoagulant nanoparticles (PPNs) that can expose the phospholipid phosphatidylserine on their surface in response to plasmin. First, we tested PPNs in vitro using human plasma and demonstrated plasmin-triggered exposure of phosphatidylserine and the resultant assembly of coagulation factors on the PPN surface. We also showed that this phosphatidylserine exposed on the PPN surface could restore and enhance thrombin generation and fibrin formation in human plasma depleted of platelets. In human plasma and whole blood in vitro, PPNs improved fibrin stability and clot robustness in a fibrinolytic environment. We then tested PPNs in vivo in a mouse model of thrombocytopenia where treatment with PPNs reduced blood loss in a manner comparable to treatment with syngeneic platelets. Furthermore, in rat and mouse models of traumatic hemorrhage, treatment with PPNs substantially reduced bleeding and improved survival. No sign of systemic or off-target thrombotic risks was observed in the animal studies. These findings demonstrate the potential of PPNs as a platelet surrogate that should be further investigated for the management of bleeding.
Many colorectal cancers (CRCs) that exhibit microsatellite instability (MSI) are not explained by MLH1 promoter methylation or germline mutations in mismatch repair (MMR) genes, which cause Lynch syndrome (LS). Instead, these Lynch-like syndrome (LLS) patients have somatic mutations in MMR genes. However, many of these patients are young and have relatives with cancer, suggesting a hereditary entity. We performed germline sequence analysis in LLS patients
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.