The influence of Artificial Intelligence is growing, as is the need to make it as explainable as possible. Explainability is one of the main obstacles that AI faces today on the way to more practical implementation. In practise, companies need to use models that balance interpretability and accuracy to make more effective decisions, especially in the field of finance. The main advantages of the multi-criteria decision-making principle (MCDM) in financial decision-making are the ability to structure complex evaluation tasks that allow for well-founded financial decisions, the application of quantitative and qualitative criteria in the analysis process, the possibility of transparency of evaluation and the introduction of improved, universal and practical academic methods to the financial decision-making process. This article presents a review and classification of multi-criteria decision-making methods that help to achieve the goal of forthcoming research: to create artificial intelligence-based methods that are explainable, transparent, and interpretable for most investment decision-makers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.