The photomechanical motion of chiral crystals of trans-azobenzene derivatives with an (S)- and (R)-phenylethylamide group was investigated and compared with a racemic crystal. Changes in the UV/Vis absorption spectra of the powdered crystals before and after UV irradiation were measured by using an optical waveguide spectrometer, showing that the lifetime of the cis-to-trans thermal back-isomerization of the chiral crystals was faster than that of the racemic crystals. Upon UV irradiation, a long plate-like chiral microcrystal bent away from the light source with a twisting motion. A square-like chiral microcrystal curled toward the light with some twisting. Reversible bending of a rod-like chiral microcrystal was repeatable over twenty-five cycles. In contrast, bending of a plate-like racemic microcrystal was small. A possible mechanism for the bending and twisting motion was discussed based on the optimized cis conformer determined by using calculations, showing that the bending motion with twisting is caused by elongation along the b axis and shrinkage along the a axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.