In this paper, we present a device that minimizes the effects of the temperature on light detection in lab-on-chip systems. The device is based on hydrogenated amorphous silicon p-type/intrinsic/n-type junction, fabricated on a glass substrate using thin-film technologies. The device structure is constituted by two series-connected amorphous silicon diodes: a blind one acting as dark reference and a photosensitive one. The signal measured at the output node of each element is equal to the difference of the current of the two diodes. This allows to minimize the temperature-dependent dark current contribution. The design of the photolithographic masks has been carefully carried out to pursue a perfect technological symmetry between the two diodes of the differential structure. Experimental data obtained by current-voltage characteristics show the correct operation of the individual diodes as well as the effectiveness of the differential structure to reject the common-mode signal induced by temperature variations. This feature makes the device a suitable candidate for analytical systems based on optical detection that involve thermal treatment
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.