In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments.
In this work, we decided to apply a hierarchical weighted decision, proposed and used in other research fields, for the recognition of gait phases. The developed and validated novel distributed classifier is based on hierarchical weighted decision from outputs of scalar Hidden Markov Models (HMM) applied to angular velocities of foot, shank, and thigh. The angular velocities of ten healthy subjects were acquired via three uni-axial gyroscopes embedded in inertial measurement units (IMUs) during one walking task, repeated three times, on a treadmill. After validating the novel distributed classifier and scalar and vectorial classifiers-already proposed in the literature, with a cross-validation, classifiers were compared for sensitivity, specificity, and computational load for all combinations of the three targeted anatomical segments. Moreover, the performance of the novel distributed classifier in the estimation of gait variability in terms of mean time and coefficient of variation was evaluated. The highest values of specificity and sensitivity (>0.98) for the three classifiers examined here were obtained when the angular velocity of the foot was processed. Distributed and vectorial classifiers reached acceptable values (>0.95) when the angular velocity of shank and thigh were analyzed. Distributed and scalar classifiers showed values of computational load about 100 times lower than the one obtained with the vectorial classifier. In addition, distributed classifiers showed an excellent reliability for the evaluation of mean time and a good/excellent reliability for the coefficient of variation. In conclusion, due to the better performance and the small value of computational load, the here proposed novel distributed classifier can be implemented in the real-time application of gait phases recognition, such as to evaluate gait variability in patients or to control active orthoses for the recovery of mobility of lower limb joints.
Gait-phase recognition is a necessary functionality to drive robotic rehabilitation devices for lower limbs. Hidden Markov Models (HMMs) represent a viable solution, but they need subject-specific training, making data processing very time-consuming. Here, we validated an inter-subject procedure to avoid the intra-subject one in two, four and six gait-phase models in pediatric subjects. The inter-subject procedure consists in the identification of a standardized parameter set to adapt the model to measurements. We tested the inter-subject procedure both on scalar and distributed classifiers. Ten healthy children and ten hemiplegic children, each equipped with two Inertial Measurement Units placed on shank and foot, were recruited. The sagittal component of angular velocity was recorded by gyroscopes while subjects performed four walking trials on a treadmill. The goodness of classifiers was evaluated with the Receiver Operating Characteristic. The results provided a goodness from good to optimum for all examined classifiers (0 < G < 0.6), with the best performance for the distributed classifier in two-phase recognition (G = 0.02). Differences were found among gait partitioning models, while no differences were found between training procedures with the exception of the shank classifier. Our results raise the possibility of avoiding subject-specific training in HMM for gait-phase recognition and its implementation to control exoskeletons for the pediatric population.
In the last years, several studies have been focused on understanding how the central nervous system controls muscles to perform a specific motor task. Although it still remains an open question, muscle synergies have come to be an appealing theory to explain the modular organization of the central nervous system. Even though the neural encoding of muscle synergies remains controversial, a large number of papers demonstrated that muscle synergies are robust across different tested conditions, which are within a day, between days, within a single subject, and between subjects that have similar demographic characteristics. Thus, muscle synergy theory has been largely used in several research fields, such as clinics, robotics, and sports. The present systematical review aims at providing an overview on the applications of muscle synergy theory in clinics, robotics, and sports; in particular, the review is focused on the papers that provide tangible information for (i) diagnosis or pathology assessment in clinics, (ii) robot-control design in robotics, and (iii) athletes' performance assessment or training guidelines in sports.
This paper presents the modular design and control of a novel compliant lower limbmulti-joint exoskeleton for the rehabilitation of ankle kneemobility and locomotion of pediatric patients with neurological diseases, such as Cerebral Palsy (CP). The device consists of an untethered powered knee-ankle-foot orthosis (KAFO), addressed as WAKE-up (Wearable Ankle Knee Exoskeleton), characterized by a position control and capable of operating synchronously and synergistically with the human musculoskeletal system. The WAKE-up mechanical system, control architecture and feature extraction are described. Two test benches were used to mechanically characterize the device. The full system showed a maximum value of hysteresis equal to 8.8% and a maximum torque of 5.6 N m/rad. A pre-clinical use was performed, without body weight support, by four typically developing children and three children with CP. The aims were twofold: 1) to test the structure under weight-bearing conditions and 2) to ascertain its ability to provide appropriate assistance to the ankle and the knee during overground walking in a real environment. Results confirm the effectiveness of the WAKE-up design in providing torque assistance in accordance to the volitionalmovements especially in the recovery of correct foot landing at the start of the gait cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.