In this paper, a simplified model for optimal sizing of the off-grid PV system regarding value of loss of load probability is described. The model gives optimal size of system in terms of required number of PV modules, peak power, number of batteries and cost of system regarding the defined value of loss of load probability, load curve and period for which optimal size will be determined. The model is applied for determination of optimal size of the off-grid PV system for the city of Osijek. Based on measured load curve, optimal size of the system is determined for values of loss of load probability from 0.00 to 0.10 in steps of 0.01, and additionally for 0.15.
The aim of this paper is to find an optimal size of different components of an off-grid PV system in the HOMER software with different types of batteries (lead-acid batteries and lithium-ion batteries). The proposed model shows the optimal size of the off-grid PV system for a holiday cottage with regard to eligibility criteria for various types of batteries and the net present cost (NPC). The observed off-grid PV system consists of PV modules, a load, a converter and batteries and it is modelled in the HOMER software. The load is modelled with a daily load diagram for the holiday cottage. For lead-acid and lithium-ion batteries the optimal size of different components of an off-grid PV system for five different scenarios (in respect of the price and life-time) is obtained. In addition, the optimal size of the presented model with respect to different values of capacity shortage ranging from 0% to 5% is presented
The aim of SEEP2017 is to bring together the researches within the field of sustainable energy and environmental protection from all over the world.The contributed papers are grouped in 18 sessions in order to provide access to readers out of 300 contributions prepared by authors from 52 countries.We thank the distinguished plenary and keynote speakers and chairs who have kindly consented to participate at this conference. We are also grateful to all the authors for their papers and to all committee members.We believe that scientific results and professional debates shall not only be an incentive for development, but also for making new friendships and possible future scientific development projects. Increasing efforts and resources have been devoted to research during environmental studies, including the assessment of various harmful impacts from industrial, civic, business, transportation and other economy activities. Environmental impacts are usually quantified through Life Cycle Assessment (LCA). In recent years, footprints have emerged as efficient and useful indicators to use within LCA. The footprint assessment techniques has provided a set of tools enabling the evaluation of Greenhouse Gas (GHG) -including CO2, emissions and the corresponding effective flows on the world scale. From all such indicators, the energy footprint represents the area of forest that would be required to absorb the GHG emissions resulting from the energy consumption required for a certain activity, excluding the proportion absorbed by the oceans, and the area occupied by hydroelectric dams and reservoirs for hydropower.An overview of the virtual GHG flow trends in the international trade, associating the GHG and water footprints with the consumption of goods and services is performed. Several important indications have been obtained: (a) There are significant GHG gaps between producer's and consumer's emissions -US and EU have high absolute net imports GHG budget. (b) China is an exporting country and increasingly carries a load of GHG emission and virtual water export associated with consumption in the relevant importing countries. (c) International trade can reduce global environmental pressure by redirecting import to products produced with lower intensity of GHG emissions and lower water footprints, or producing them domestically.To develop self-sufficient regions based on more efficient processes by combining neighbouring countries can be a promising development. A future direction should be focused on two main areas: (1) To provide the self-sufficient regions based on more efficient processes by combining production of surrounding countries. (2) To develop the shared mechanism and market share of virtual carbon between trading partners regionally and internationally. HAKAN SERHAD SOYHAN 4 Development in energy sector, technological advancements, production and consumption amounts in the countries and environmental awareness give shape to industry of energy. When the dependency is taken into account in terms of natural...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.