As the finalization of the hydrogen experiment towards the deuterium phase, the exploration of the best performance of the hydrogen plasma was intensively performed in the Large Helical Device (LHD). High ion and electron temperatures, Ti, Te, of more than 6 keV were simultaneously achieved by superimposing the high power electron cyclotron resonance heating (ECH) on the neutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid the degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value . The high regime around 4 % was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with the wide range of edge plasma parameters. Existence of no impurity accumulation regime where the high performance plasma is maintained with high power heating > 10 MW was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.