Background and Objective Favorable prognosis of the upper limb depends on preservation or return of voluntary finger extension (FE) early after stroke. The present study aimed to determine the effects of modified constraint-induced movement therapy (mCIMT) and electromyography-triggered neuromuscular stimulation (EMG-NMS) on upper limb capacity early poststroke. Methods A total of 159 ischemic stroke patients were included: 58 patients with a favorable prognosis (>10° of FE) were randomly allocated to 3 weeks of mCIMT or usual care only; 101 patients with an unfavorable prognosis were allocated to 3-week EMG-NMS or usual care only. Both interventions started within 14 days poststroke, lasted up until 5 weeks, focused at preservation or return of FE. Results Upper limb capacity was measured with the Action Research Arm Test (ARAT), assessed weekly within the first 5 weeks poststroke and at postassessments at 8, 12, and 26 weeks. Clinically relevant differences in ARAT in favor of mCIMT were found after 5, 8, and 12 weeks poststroke (respectively, 6, 7, and 7 points; P < .05), but not after 26 weeks. We did not find statistically significant differences between mCIMT and usual care on impairment measures, such as the Fugl-Meyer assessment of the arm (FMA-UE). EMG-NMS did not result in significant differences. Conclusions Three weeks of early mCIMT is superior to usual care in terms of regaining upper limb capacity in patients with a favorable prognosis; 3 weeks of EMG-NMS in patients with an unfavorable prognosis is not beneficial. Despite meaningful improvements in upper limb capacity, no evidence was found that the time-dependent neurological improvements early poststroke are significantly influenced by either mCIMT or EMG-NMS.
BackgroundQuantifying increased joint resistance into its contributing factors i.e. stiffness and viscosity ("hypertonia") and stretch reflexes ("hyperreflexia") is important in stroke rehabilitation. Existing clinical tests, such as the Ashworth Score, do not permit discrimination between underlying tissue and reflexive (neural) properties. We propose an instrumented identification paradigm for early and tailor made interventions.MethodsRamp-and-Hold ankle dorsiflexion rotations of various durations were imposed using a manipulator. A one second rotation over the Range of Motion similar to the Ashworth condition was included. Tissue stiffness and viscosity and reflexive torque were estimated using a nonlinear model and compared to the Ashworth Score of nineteen stroke patients and seven controls.ResultsAnkle viscosity moderately increased, stiffness was indifferent and reflexive torque decreased with movement duration. Compared to controls, patients with an Ashworth Score of 1 and 2+ were significantly stiffer and had higher viscosity and patients with an Ashworth Score of 2+ showed higher reflexive torque. For the one second movement, stiffness correlated to Ashworth Score (r2 = 0.51, F = 32.7, p < 0.001) with minor uncorrelated reflexive torque. Reflexive torque correlated to Ashworth Score at shorter movement durations (r2 = 0.25, F = 11, p = 0.002).ConclusionStroke patients were distinguished from controls by tissue stiffness and viscosity and to a lesser extent by reflexive torque from the soleus muscle. These parameters were also sensitive to discriminate patients, clinically graded by the Ashworth Score. Movement duration affected viscosity and reflexive torque which are clinically relevant parameters. Full evaluation of pathological joint resistance therefore requires instrumented tests at various movement conditions.
Sudden stretch of active muscle typically results in two characteristic electromyographic responses: the short latency M1 and the long latency M2. The M1 response originates from the monosynaptic Ia afferent reflex pathway. The M2 response is less well understood and is likely a compound response to different afferent inputs mediated by spinal and transcortical pathways. In this study the possible contribution of the Ia afferent pathway to the M2 response was investigated. A mechanism was hypothesized in which the M1 response synchronizes the motoneurons, and therewith their refractory periods. Stretch perturbation experiments were performed on the wrist and results were compared with a computational model of a pool of motoneurons receiving tonic and Ia afferent input. The simulations showed the same stretch amplitude, velocity, and duration-dependent characteristics on the M2 as found experimentally. It was concluded that the stretch duration effect of the M2 likely originates from the proposed Ia afferent mediated mechanism.
To capture prey, chameleons ballistically project their tongues as far as 1.5 body lengths with accelerations of up to 500 m s(-2). At the core of a chameleon's tongue is a cylindrical tongue skeleton surrounded by the accelerator muscle. Previously, the cylindrical accelerator muscle was assumed to power tongue projection directly during the actual fast projection of the tongue. However, high-speed recordings of Chamaeleo melleri and C. pardalis reveal that peak powers of 3000 W kg(-1) are necessary to generate the observed accelerations, which exceed the accelerator muscle's capacity by at least five- to 10-fold. Extrinsic structures might power projection via the tongue skeleton. High-speed fluoroscopy suggests that they contribute less than 10% of the required peak instantaneous power. Thus, the projection power must be generated predominantly within the tongue, and an energy-storage-and-release mechanism must be at work. The key structure in the projection mechanism is probably a cylindrical connective-tissue layer, which surrounds the entoglossal process and was previously suggested to act as lubricating tissue. This tissue layer comprises at least 10 sheaths that envelop the entoglossal process. The outer portion connects anteriorly to the accelerator muscle and the inner portion to the retractor structures. The sheaths contain helical arrays of collagen fibres. Prior to projection, the sheaths are longitudinally loaded by the combined radial contraction and hydrostatic lengthening of the accelerator muscle, at an estimated mean power of 144 W kg(-1) in C. melleri. Tongue projection is triggered as the accelerator muscle and the loaded portions of the sheaths start to slide over the tip of the entoglossal process. The springs relax radially while pushing off the rounded tip of the entoglossal process, making the elastic energy stored in the helical fibres available for a simultaneous forward acceleration of the tongue pad, accelerator muscle and retractor structures. The energy release continues as the multilayered spring slides over the tip of the smooth and lubricated entoglossal process. This sliding-spring theory predicts that the sheaths deliver most of the instantaneous power required for tongue projection. The release power of the sliding tubular springs exceeds the work rate of the accelerator muscle by at least a factor of 10 because the elastic-energy release occurs much faster than the loading process. Thus, we have identified a unique catapult mechanism that is very different from standard engineering designs. Our morphological and kinematic observations, as well as the available literature data, are consistent with the proposed mechanism of tongue projection, although experimental tests of the sheath strain and the lubrication of the entoglossal process are currently beyond our technical scope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.