Microwave assisted polycondensation for the synthesis of (partially) biobased polyazomethines in water (hydrothermal polymerization) was investigated for the first time in this study. The polyazomethines prepared via this environmetanlly friendly...
Study of the kinetics and thermodynamics of the organocatalyzed ring opening polymerization of a regio-isomeric mixture of β,δ-trimethyl-ε-caprolactones (TMCL).
In order to fully exploit the potential of carbohydrate-based monomers, different (and some new) functionalities are introduced on galactaric acid via acetalization, and subsequently, partially-biobased polyamides are prepared therefrom via polycondensation in the melt. Compared to nonsubstituted linear monomer, faster advancement of the reaction is observed for the different biacetal derivatives of galactaric acid. This kinetic observation is of great significance since it allows conducting a polymerization reaction at lower temperatures than normally expected for polyamides, which allows overcoming typical challenges (e.g., thermal degradation) encountered upon polymerization of carbohydrate-derived monomers in the melt. The polymers derived from the modified galactaric acid monomers vary in terms of glass transition temperature, thermal stability, hydrophilicity, and functionality.
The cover image is based on the Research Article A machine learning approach for the design of hyperbranched polymeric dispersing agents based on aliphatic polyesters for radiation‐curable inks by Danny EP Vanpoucke et al., https://doi.org/10.1002/pi.6378.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.