ABSTRAKPerairan Wokam Aru Utara, Papua Barat merupakan bagian tepi utara passive margin Mesozoik Arafura – Australia. Hasil survei dengan KR. Geomarin III di perairan Wokam 2014 diperoleh lintasan seismik Multi Kanal 1.182 km, dan pemeruman batimetri/sub bottom profiles (SBP) 1.510 km. Metode dilakukan interpretasi penampang seismik hasil survei, pengikatan sumur pemboran dan seismik, analisis petrofisika dan pemetaaan geologi bawah permukaan. Pada penampang seismik telah dilakukan interpretasi aspek struktur geologi dan perlapisan sedimen yang sebelumnya telah diikat dengan data sumur ASA-1X, ASM-1X dan ASB-1X untuk tiga horizon yaitu Top Neogen, Top Paleogen dan Base PaleogenPeta bawah permukaan Paleogen – Neogen menunjukan beberapa klosur yang berpotensi di bagian batas paparan dengan palung Aru serta bagian barat. Pada bagian Tenggara terdapat kenampakan onlapping sedimentasi Tipe struktural yang berkembang sebagai perangkap secara dominan berupa graben – half graben dan tilted faul. Onlaping sedimentasi yang mebaji juga dapat berpotensi.Struktur geologi pada area penelitian secara umum dikontrol oleh sesar utama Zona Sesar Palung Aru Utara di tepian paparan sampai lereng, mengarah utara - timur laut ke selatan - barat daya. Struktur ikutan yaitu sesar-sesar normal mengarah utara - timur laut ke selatan - barat daya di paparan sebelah timur zonar sesar utama.Studi awal potensi migas ini teridentifikasi empat lokasi potensi perangkap hidrokarbon dari umur Paleogen - Neogen, yaitu satu lokasi dari Peta Base Paleogen, dua lokasi Top Paleogen dan satu lokasi Top Neogen. kata kunci: Wokam, Aru, migas, seismik, struktur, interpretasi, jebakan, Geomarin III ABSTRACTThe waters of Wokam North Aru, West Papua are part of the northern edge of the Mesozoic passive margin of Arafura - Australia. Survey results with KR. Geomarin III in the waters of Wokam 2014 obtained a multi-channel seismic trajectory of 1,182 km, and bathymarism/sub bottom profiles (SBP) 1,510 km. The method is to interpret the seismic cross-section of the survey results, tie drilling and seismic wells, petrophysical analysis and mapping the subsurface geology. In the seismic section, an interpretation of the structural aspects of the geology and sediment layers has been carried out previously tied to data from the ASA-1X, ASM-1X and ASB-1X wells for three horizons, namely Top Neogen, Top Paleogene and Base Paleogene.The subsurface map of the Paleogene - Neogeneous surface shows several potential closures in the exposure boundary with the Aru Trench as well as the western part. In the Southeast, there is the appearance of sedimentation onlapping. Structural types that develop as traps are predominantly graben - half graben and tilted fault. The onlaping sedimentation also has potential. The geological structure in the study area is generally controlled by the main fault of the North Aru Trench Zone on the edge of the exposure to the slope, heading north - northeast to south - southwest. Follow-up structures are normal faults pointing north - northeast to south - southwest on the eastern exposure of the main fault zone.This preliminary study of oil and gas potential identified four potential locations for hydrocarbon traps from the Paleogene - Neogene age, namely one location from the Paleogene Base Map, two Top Paleogene locations and one Top Neogen location.Keyword: Wokam, Aru, oil and gas, seismic, structure, interpretation, traps, Geomarin III
The Arafura waters are part of the northern edge of the Mesozoic Passive Margin of Australia. The movement of plates on the ocean floor results in the formation of reliefs on the seabed, these reliefs are commonly referred to as seabed morphology. Tectonic activity on the Tarera-Aiduna fault, until now still plays an important role and controls conversion tectonic activity in this area. Collision between plates or subduction is the eventuality quality of a collision between plates, where one plate plunges downwards, forming an ocean trench. The seabed is a very deep and narrow seabed, the walls are steep and steep with a depth of more than 200 m. The purpose of this study was to determine the morphological formations on the seabed caused by tectonic activity, so as to obtain what tectonic processes are working in the area. The method used in this research is to analyze the data generated by the survey ship Geomarine III, owned by P3GL, Ministry of Energy and Mineral Resources. The data used are Marine seismic data and Bathymetry data, analysis of seismic data is intended to determine rock layers, and the geometric shape of the structures that develop in the area, while Bathymetric data analysis is intended to determine the depth of sea water, which is also used to determine reliefs. Or morphology under the seabed. The results of the analysis are in the form of morphological formations on the ocean floor starting from the Exposure area to the Aru Trench.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.