In the development of new varieties, physicochemical properties such as grain quality, milling, and chemical content are important. Twenty rice hybrids were tested in various environments in this study. Using multivariate and univariate models, the major goal is to identify rice hybrids with acceptable physicochemical properties and high stability. According to the ANOVA, variance due to season×genotype×location revealed a significant difference in length to width ratio, head rice recovery, and amylose content. Milled grain length and width varied from 6.64 to 7.32 mm and 1.78 to 2.06 mm, respectively, throughout the environments. The head rice recovery and amylose content, on the other hand, varied from 84.83 to 94.68% and 16.51 to 22.21%, respectively. The stability analysis for head rice trait using genotype superiority, static stability, Wrickie ecovelance, Nassar and Huehn, AMMI stability value, and coefficient of variation stability analysis, revealed that hybrids G2, G13, G8, G16, G7, G9, G6, G17, and G18 were the most stable. For Amylose content, hybrids G7, G4, G19, G10, G5, G17, G3, G12 and G11 were significantly stable. Except for G5, all hybrids demonstrated stable performance in the multivariate stability analysis for head rice recovery. Similarly, hybrids G3, G4, G5, and G7 responded in minimum GE interaction in multivariate analysis for amylose content. This discovery can help breeders pick potential hybrids by identifying the physicochemical attribute expression that was examined in different conditions
Tillering and yield are linked in rice, with significant efforts being invested to understand the genetic basis of this phenomenon. However, in addition to genetic factors, tillering is also influenced by the environment. Exploiting experiments in which seedlings were first grown in elevated CO2 (eCO2) before transfer and further growth under ambient CO2 (aCO2) levels, we found that even moderate exposure times to eCO2 were sufficient to induce tillering in seedlings, which was maintained in plants grown to maturity plants in controlled environment chambers. We then explored whether brief exposure to eCO2 (eCO2 priming) could be implemented to regulate tiller number and yield in the field. We designed a cost-effective growth system, using yeast to increase the CO2 level for the first 24 days of growth, and grew these seedlings to maturity in semi-field conditions in Malaysia. The increased growth caused by eCO2 priming translated into larger mature plants with increased tillering, panicle number, and improved grain filling and 1000 grain weight. In order to make the process more appealing to conventional rice farmers, we then developed a system in which fungal mycelium was used to generate the eCO2 via respiration of sugars derived by growing the fungus on lignocellulosic waste. Not only does this provide a sustainable source of CO2, it also has the added financial benefit to farmers of generating economically valuable oyster mushrooms as an end-product of mycelium growth. Our experiments show that the system is capable of generating sufficient CO2 to induce increased tillering in rice seedlings, leading eventually to 18% more tillers and panicles in mature paddy-grown crop. We discuss the potential of eCO2 priming as a rapidly implementable, broadly applicable and sustainable system to increase tillering, and thus yield potential in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.