During the last decade, density function theory (DFT) in its static and dynamic time dependent forms, has emerged as a powerful tool to describe the structure and dynamics of doped liquid helium and droplets. In this review, we summarize the activity carried out in this field within the DFT framework since the publication of the previous review article on this subject [M. Barranco et al.,
Electron spin resonance (ESR) measurements were carried out to study the rotation of methyl radicals (CH(3)) in solid carbon monoxide, carbon dioxide, and nitrogen matrices. The radicals were produced by dissociating methane by plasma bursts generated by a focused 193 nm ArF excimer laser radiation during the gas condensation on the substrate. The ESR spectra exhibit anisotropic features that persist over the temperature range examined, and in most cases this indicates a restriction of rotation about the C(2) symmetry axis. A nonrotating CH(3) was also observed in a CO(2) matrix. The intensity ratio between the symmetric (A) and antisymmetric (E) nuclear spin states was recorded as a function of temperature for each molecular matrix. The rotational energy levels are modified from their gas phase structure with increasing crystal field strength. An anomalous situation was observed where the A/E ratio extended below the high temperature limit of 1/2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.