Saccadic reaction time (SRT) is a widely used dependent variable in eye-tracking studies of human cognition and its disorders. SRTs are also frequently measured in studies with special populations, such as infants and young children, who are limited in their ability to follow verbal instructions and remain in a stable position over time. In this article, we describe a library of MATLAB routines (Mathworks, Natick, MA) that are designed to (1) enable completely automated implementation of SRT analysis for multiple data sets and (2) cope with the unique challenges of analyzing SRTs from eye-tracking data collected from poorly cooperating participants. The library includes preprocessing and SRT analysis routines. The preprocessing routines (i.e., moving median filter and interpolation) are designed to remove technical artifacts and missing samples from raw eye-tracking data. The SRTs are detected by a simple algorithm that identifies the last point of gaze in the area of interest, but, critically, the extracted SRTs are further subjected to a number of postanalysis verification checks to exclude values contaminated by artifacts. Example analyses of data from 5- to 11-month-old infants demonstrated that SRTs extracted with the proposed routines were in high agreement with SRTs obtained manually from video records, robust against potential sources of artifact, and exhibited moderate to high test–retest stability. We propose that the present library has wide utility in standardizing and automating SRT-based cognitive testing in various populations. The MATLAB routines are open source and can be downloaded from http://www.uta.fi/med/icl/methods.html.Electronic supplementary materialThe online version of this article (doi:10.3758/s13428-014-0473-z) contains supplementary material, which is available to authorized users.
Biases in attention towards facial cues during infancy may have an important role in the development of social brain networks. The current study used a longitudinal design to examine the stability of infants' attentional biases towards facial expressions and to elucidate how these biases relate to emerging cortical sensitivity to facial expressions. Event-related potential (ERP) and attention disengagement data were acquired in response to the presentation of fearful, happy, neutral, and phase-scrambled face stimuli from the same infants at 5 and 7 months of age. The tendency to disengage from faces was highly consistent across both ages. However, the modulation of this behavior by fearful facial expressions was uncorrelated between 5 and 7 months. In the ERP data, fear-sensitive activity was observed over posterior scalp regions, starting at the latency of the N290 wave. The scalp distribution of this sensitivity to fear in ERPs was dissociable from the topography of face-sensitive modulation within the same latency range. While attentional bias scores were independent of co-registered ERPs, attention bias towards fearful faces at 5 months of age predicted the fear-sensitivity in ERPs at 7 months of age. The current results suggest that the attention bias towards fear could be involved in the developmental tuning of cortical networks for social signals of emotion.
Recording of event-related potentials (ERPs) is one of the best-suited technologies for examining brain function in human infants. Yet the existing software packages are not optimized for the unique requirements of analyzing artifact-prone ERP data from infants. We developed a new graphical user interface that enables an efficient implementation of a two-stage approach to the analysis of infant ERPs. In the first stage, video records of infant behavior are synchronized with ERPs at the level of individual trials to reject epochs with noncompliant behavior and other artifacts. In the second stage, the interface calls MATLAB and EEGLAB (Delorme & Makeig, Journal of Neuroscience Methods 134(1):9–21, 2004) functions for further preprocessing of the ERP signal itself (i.e., filtering, artifact removal, interpolation, and rereferencing). Finally, methods are included for data visualization and analysis by using bootstrapped group averages. Analyses of simulated and real EEG data demonstrated that the proposed approach can be effectively used to establish task compliance, remove various types of artifacts, and perform representative visualizations and statistical comparisons of ERPs. The interface is available for download from http://www.uta.fi/med/icl/methods/eeg.html in a format that is widely applicable to ERP studies with special populations and open for further editing by users.Electronic supplementary materialThe online version of this article (doi:10.3758/s13428-013-0404-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.