Pervasive computing and Internet of Things (IoTs) paradigms have created a huge potential for new business. To fully realize this potential, there is a need for a common way to abstract the heterogeneity of devices so that their functionality can be represented as a virtual computing platform. To this end, we present novel semantic level interoperability architecture for pervasive computing and IoTs. There are two main principles in the proposed architecture. First, information and capabilities of devices are represented with semantic web knowledge representation technologies and interaction with devices and the physical world is achieved by accessing and modifying their virtual representations. Second, global IoT is divided into numerous local smart spaces managed by a semantic information broker (SIB) that provides a means to monitor and update the virtual representation of the physical world. An integral part of the architecture is a resolution infrastructure that provides a means to resolve the network address of a SIB either using a physical object identifier as a pointer to information or by searching SIBs matching a specification represented with SPARQL. We present several reference implementations and applications that we have developed to evaluate the architecture in practice. The evaluation also includes performance studies that, together with the applications, demonstrate the suitability of the architecture to real-life IoT scenarios. In addition, to validate that the proposed architecture conforms to the common IoT-A architecture reference model (ARM), we map the central components of the architecture to the IoT-ARM.
Semantics associates meaning with Internet of Things (IoT) data and facilitates the development of intelligent IoT applications and services. However, the big volume of the data generated by IoT devices and resource limitations of these devices have given rise to challenges for applying semantic technologies. In this article, we present Cloud and edge based IoT architectures for semantic reasoning. We report three experiments that demonstrate how edge computing can facilitate IoT systems in terms of data transfer and semantic reasoning. We also analyze how distributing reasoning tasks between the Cloud and edge devices affects system performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.