The antioxidative activity of a total of 92 phenolic extracts from edible and nonedible plant materials (berries, fruits, vegetables, herbs, cereals, tree materials, plant sprouts, and seeds) was examined by autoxidation of methyl linoleate. The content of total phenolics in the extracts was determined spectrometrically according to the Folin-Ciocalteu procedure and calculated as gallic acid equivalents (GAE). Among edible plant materials, remarkable high antioxidant activity and high total phenolic content (GAE > 20 mg/g) were found in berries, especially aronia and crowberry. Apple extracts (two varieties) showed also strong antioxidant activity even though the total phenolic contents were low (GAE < 12.1 mg/g). Among nonedible plant materials, high activities were found in tree materials, especially in willow bark, spruce needles, pine bark and cork, and birch phloem, and in some medicinal plants including heather, bog-rosemary, willow herb, and meadowsweet. In addition, potato peel and beetroot peel extracts showed strong antioxidant effects. To utilize these significant sources of natural antioxidants, further characterization of the phenolic composition is needed.
Natural derived or originated compounds still play a major role as drugs, and as lead structures for the development of synthetic molecules. About 50% of the drugs introduced to the market during the last 20 years are derived directly or indirectly from small biogenic molecules. In the future, natural products will continue to play a major role as active substances, model molecules for the discovery and validation of drug targets. A multidisciplinary approach to drug discovery involving the generation of truly novel molecular diversity from natural product sources, combined with total and combinatorial synthetic methodologies provides the best solution to increase the productivity in drug discovery and development. Screening for new drugs in plants implies the screening of extracts for the presence of novel compounds and an investigation of their biological activities. It is currently estimated that approximately 420,000 plant species exist in nature. For the purpose of lead discovery, or for the scientific validation of a traditional medicinal plant or a phytopharmaceutical, active principals in complex matrices need to be identified. Therefore, the interfacing of biological and chemical assessment becomes the critical issue. Drug discovery from plants can be guided by epidemiologic studies facilitated with computer assisted HPLC microfractionation and microplate technology. Epidemiologic studies have shown that high dietary flavonoid intake may be associated with decreased risk for cardiovascular disease. Chlamydia pneumoniae is a common human pathogen and epidemiological and clinical studies have shown a connection between chronic C. pneumoniae infection, atherosclerosis and the risk of myocardial infarction. We will present here the detection of natural compounds active against C. pneumoniae as an example.
The effect of nine different eluent compositions on the ionization efficiency of five flavonoids was studied using ion spray (IS), atmospheric pressure chemical ionization (APCI), and the novel atmospheric pressure photoionization (APPI), in positive and negative ion modes. The eluent composition had a great effect on the ionization efficiency, and the optimal ionization conditions were achieved in positive ion IS and APCI using 0.4% formic acid (pH 2.3) as a buffer, and in negative ion IS and APCI using ammonium acetate buffer adjusted to pH 4.0. For APPI work, the eluent of choice appeared to be a mixture of organic solvent and 5 mM aqueous ammonium acetate. The limits of detection (LODs) were determined in scan mode for the analytes by liquid chromatography/mass spectrometry using IS, APCI and APPI interfaces. The results show that negative ion IS with an eluent system consisting of acidic ammonium acetate buffer provides the best conditions for detection of flavonoids in mass spectrometry mode, their LODs being between 0.8 and 13 microM for an injection volume of 20 microl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.