aThe purpose of this work was to determine the optimal welding time for linear friction welding of birch (Betula pendula L.) wood while keeping the other parameters constant and at similar levels compared to other species in a similar density range. Specimens with dimensions of 20 × 5 × 150 mm 3 were welded together, and the influence of welding time (2.5, 3.0, 3.5, and 4.0 s) on the mechanical properties of the specimens was determined. The studies included a tensile-shear strength test as well as visual estimation of wood failure percentage (WFP). Additionally, X-ray microtomographic imaging was used to investigate and characterise the bond line properties as a non-destructive testing method. The highest mean tensile-shear strength, 7.9 MPa, was reached with a welding time of 3.5 s. Generally, all four result groups showed high, yet decreasing proportional standard deviations as the welding time increased. X-ray microtomographic images and analysis express the heterogeneity of the weld line clearly as well. According to the averaged group-wise results, WFP and tensile-shear strength correlated positively with an R 2 of 0.93. An extrapolation of WFP to 65% totals a tensile-shear strength of 10.6 MPa, corresponding to four common adhesive bonds determined for beech.
: This research investigates an effective alkali (NaOH) treatment and fire-retardant coating to produce biocomposites from frost-retted hemp fiber and PLA. The fiber surface treatment with various NaOH concentrations was investigated throughout a range of soaking times. The results show that the extracted non-cellulosic fiber content increases with treatment duration and NaOH concentration, while the fraction of targeted components removed remains nearly unchanged after soaking for 1, 2, and 4 h with a 5 wt.% NaOH solution. At the composite level, the treatment with 5 wt.% NaOH solution for 1 h emerged as the most efficient, with tensile strength, Young’s modulus, flexural strength, and flexural modulus of 89.6 MPa, 9.1 GPa, 121.6 MPa, and 9.6 GPa, respectively, using 30 wt.% fibrous reinforcement. The fire performance of the examined batches of biocomposites improved significantly with the novel fire-retardant (Palonot F1) coating. However, the tensile strength notably decreased, while the flexural properties showed only a slight reduction. In most cases, the biocomposites with the alkali-treated hemp fiber had delayed ignition during the 5 min exposure to the cone heater. The findings in this work contribute to studies that will be required to give design guidelines for sustainable building options.
In this study, the moisture resistance properties of self-bonded plywood were enhanced by thermal modification. The plywood was prepared without any adhesive, using only heat, moisture and mechanical compression. It is known that self-bonded plywood or the wood welding joints suffer from delamination under moist conditions. The results show that the moisture resistance of the joints can be enhanced, i.e. the tendency of delamination can be reduced or eliminated (almost totally) by post-manufacture thermal modification. This was most probably caused by lowered water absorption, relaxation of stored strain energy and formation of crosslinks within the lignin–hemicellulose matrix. The changes in bond integrity in moist conditions as affected by different lay-up types and initial veneer moisture contents were also evaluated. Plywood from initially wet veneers was found to have greater bond stability when soaked. This might be caused by increased crosslinks, because the lignin–hemicellulose matrix is more mobile in wet conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.