We have investigated the potential role of neurotrophic factors in antipsychotic drug action by examining the effects of antipsychotic and psychotropic treatments on the mRNA expression of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and their receptors, trkB and trkC, respectively, in rat brain. Neither acute nor chronic clozapine treatment significantly affected the expression of these mRNAs in any brain area investigated, except for a decrease in trkB expression in the granule cells of the olfactory bulb. We then examined the effects of the psychotropic agent MK-801. MK-801 (5 mg/kg; 4 h) significantly increased BDNF mRNA in the entorhinal cortex, but did not influence NT-3, trkB, or trkC expression in any brain area except for the olfactory bulb. The induction of BDNF mRNA by MK-801 was attenuated by pre-treatment (1 h prior to MK-801 administration) with the antipsychotics, clozapine (25 mg/kg) and haloperidol (2 mg/kg), but not with the antidepressant desipramine (15 mg/kg). Finally, we confirmed that the effects of MK-801 on BDNF mRNA were reflected in the respective changes in BDNF protein levels: MK-801 significantly increased anti-BDNF reactivity in the entorhinal cortex (126 +/- 7% of control) while concomitantly decreasing in the hippocampus (71 +/- 2% of control). These data do not support the hypothesis that neurotrophins play an important role in antipsychotic drug action, but rather suggest that induction of BDNF in the entorhinal cortex may play a significant role in the psychotropic action of MK-801.
1. The noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists produce behavioral responses that closely resemble both positive and negative symptoms of schizophrenia. These drugs also induce excitatory and neurotoxic effects in limbic cortical areas. 2. We have here mapped the brain areas which show increased activity in response to noncompetitive NMDA-receptor antagonist administration concentrating especially to those brain areas that have been suggested to be relevant in the pathophysiology of schizophrenia. 3. Rats were treated intraperitoneally with a NMDA-receptor antagonist MK801 and activation of brain areas was detected by monitoring the expression of c-fos mRNA by using in situ hybridization. 4. MK801 induced c-fos mRNA expression of in the retrosplenial, entorhinal, and prefrontal cortices. Lower c-fos expression was observed in the layer IV of the parietal and frontal cortex. In the thalamus, c-fos mRNA expression was detected in the midline nuclei and in the reticular nucleus but not in the dorsomedial nucleus. In addition, c-fos mRNA was expressed in the anterior olfactory nucleus, the ventral tegmental area, and in cerebellar granule neurons. 5. NMDA-receptor antagonist ketamine increased dopamine release in the parietal cortex, in the region where NMDA-receptor antagonist increased c-fos mRNA expression. 6. Thus, the psychotropic NMDA-receptor antagonist induced c-fos mRNA expression in most, but not all, brain areas implicated in the pathophysiology of schizophrenia. The high spatial resolution of in situ hybridization may help to define regions of interest for human imaging studies.
We have characterized excitatory effects of non-competitive NMDA receptor antagonists MK-801, PCP, and ketamine in the rat entorhinal cortex and in cultured primary entorhinal cortical neurons using expression of immediate early gene c-fos as an indicator. NMDA receptor antagonists produced a strong and dose-dependent increase in c-fos mRNA and protein expression confined to neurons in the layer III of the caudal entorhinal cortex. Induction of c-fos mRNA is delayed and it is inhibited by antipsychotic drugs. Cultured entorhinal neurons are killed by high doses of MK-801 and PCP but c-fos expression is not induced in these neurons indicating that this in vitro model does not fully replicate the in vivo effects of PCP-like drugs in the entorhinal cortex. Excitatory effects of the NMDA receptor antagonists may be connected with the psychotropic side effects of these drugs and might become a useful modelNMDA receptor antagonists, such as phencyclidine, ketamine, and MK-801 (dizocilpine) produce in humans psychotogenic side effects which clinically closely resemble schizophrenia and are characterized by distorted body image, hallucinations, vivid dreams, and delirium (Johnson and Jones 1990;Javitt and Zukin 1991). Ketamine also frequently induces psychotic "emergence reactions" in adults (Krystal et al. 1994). Because of these parallels between the psychotomimetic state produced by the NMDA receptor antagonists and schizophrenia, PCP-induced psychosis has widely been used as an experimental model of schizophrenia (Javitt and Zukin 1991).In a series of pioneering studies, Olney and coworkers demonstrated that NMDA receptor antagonists produce reversible neurotoxic effects in neurons in the posterior cingulate and retrosplenial cortices (RSC) of rat brain (Olney et al. 1989(Olney et al. , 1991 Farber 1995a, 1995b). These effects are characterized by reversible intracellular vacuolization (Olney et al. 1989) and induction of mRNAs for c-fos (Dragunow and Faull 1990;Hughes et al. 1993;Näkki et al. 1996), heat shock protein 70 (HSP70) (Sharp et al. 1991(Sharp et al. , 1994Näkki et al. 1995), and brain-derived neurotrophic factor (BDNF) Hughes et al. 1993). Induction of cfos and BDNF is typically observed in activated neurons and we therefore tentatively call these effects "ex- citatory" to distinguish them from the prevention of excitation, which is the typical effect of NMDA receptor antagonists in other brain areas. These excitatory actions may be connected with the psychotomimetic side effects produced by PCP-like drugs Farber 1995a, 1995b). We have previously observed that MK-801 increases mRNA for BDNF not only in the retrosplenial cortex but also in the entorhinal cortex (EC) . EC is the input and output station of the information going to and coming from the hippocampus (Jones 1993;Amaral and Witter 1995). It is thought that the EC-hippocampus loop is very important in the processing of sensory information and defects in its normal function might produce cognitive disturbances (Jones 1993). Therefore, neurons i...
N-methyl-D-aspartate (NMDA) receptor function appears to be under complex control during physiological and pharmacological states. We have investigated the effects of acute administration of uncompetitive NMDA receptor antagonists on mRNA levels of NMDA receptor subunits and on molecules known to cluster or phosphorylate the receptor utilizing in situ hybridization on rat brain sections. A high dose (5 mg/kg; 4 hr) of dizocilpine (MK-801) decreased mRNA levels of NMDA receptor subunits NR2C and NR2B in the entorhinal and parietal cortices, respectively. MK-801 increased mRNA levels of synapse-associated protein-90/postsynaptic density-95 (SAP90/PSD-95) and a gamma-isoform of protein kinase C (PKCgamma) in cortical regions. Synapse-associated protein-97 (SAP97) mRNA levels were increased in the entorhinal cortex layer III after MK-801 or after relatively high doses of other uncompetitive NMDA receptor antagonists: phencyclidine (15 mg/kg; 6 hr) and memantine (50 mg/kg; 6 hr). Memantine also increased SAP97 mRNA expression in other cortical regions, but this effect was not observed with MK-801 or phencyclidine. NMDA receptor uncompetitive antagonists alter the expression of multiple receptor components and such events may ultimately play a role in adaptation or toxic responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.