The misfolding of the Amyloid-beta (Aβ) peptide into β-sheet enriched conformations was proposed as an early event in Alzheimer's Disease (AD). Here, the Aβ peptide secondary structure distribution in cerebrospinal fluid (CSF) and blood plasma of 141 patients was measured with an immuno-infrared-sensor. The sensor detected the amide I band, which reflects the overall secondary structure distribution of all Aβ peptides extracted from the body fluid. We observed a significant downshift of the amide I band frequency of Aβ peptides in Dementia Alzheimer type (DAT) patients, which indicated an overall shift to β-sheet. The secondary structure distribution of all Aβ peptides provides a better marker for DAT detection than a single Aβ misfold or the concentration of a specific oligomer. The discrimination between DAT and disease control patients according to the amide I frequency was in excellent agreement with the clinical diagnosis (accuracy 90% for CSF and 84% for blood). The amide I band maximum above or below the decisive marker frequency appears as a novel spectral biomarker candidate of AD. Additionally, a preliminary proof-of-concept study indicated an amide I band shift below the marker band already in patients with mild cognitive impairment due to AD. The presented immuno-IR-sensor method represents a promising, simple, robust, and label-free diagnostic tool for CSF and blood analysis.
The present study combined molecular and neuroimaging techniques to examine if free radical-mediated damage to barrier function in hypoxia would result in extracellular edema, raise intracranial pressure (ICP) and account for the neurological symptoms typical of high-altitude headache (HAH) also known as acute mountain sickness (AMS). Twenty-two subjects were randomly exposed for 18 h to 12% (hypoxia) and 21% oxygen (O2 (normoxia)) for collection of venous blood (0 h, 8 h, 15 h, 18 h) and CSF (18 h) after lumbar puncture (LP). Electron paramagnetic resonance (EPR) spectroscopy identified a clear increase in the blood and CSF concentration of O2 and carbon-centered free radicals (P<0.05 versus normoxia) subsequently identified as lipid-derived alkoxyl (LO*) and alkyl (LC*) species. Magnetic resonance imaging (MRI) demonstrated a mild increase in brain volume (7.0+/-4.8 mL or 0.6%+/-0.4%, P<0.05 versus normoxia) that resolved within 6 h of normoxic recovery. However, there was no detectable evidence for gross barrier dysfunction, elevated lumbar pressures, T2 prolongation or associated neuronal and astroglial damage. Clinical AMS was diagnosed in 50% of subjects during the hypoxic trial and corresponding headache scores were markedly elevated (P<0.05 versus non-AMS). A greater increase in brain volume was observed, though this was slight, independent of oxidative stress, barrier dysfunction, raised lumbar pressure, vascular damage and measurable evidence of cerebral edema and only apparent in the most severe of cases. These findings suggest that free-radical-mediated vasogenic edema is not an important pathophysiological event that contributes to the mild brain swelling observed in HAH.
The secondary structure change of the Abeta peptide to beta‐sheet was proposed as an early event in Alzheimer's disease. The transition may be used for diagnostics of this disease in an early state. We present an Attenuated Total Reflection (ATR) sensor modified with a specific antibody to extract minute amounts of Abeta peptide out of a complex fluid. Thereby, the Abeta peptide secondary structure was determined in its physiological aqueous environment by FTIR‐difference‐spectroscopy. The presented results open the door for label‐free Alzheimer diagnostics in cerebrospinal fluid or blood. It can be extended to further neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.