Alzheimer's disease (AD) is currently incurable, but there is general agreement that a minimally invasive blood biomarker for screening in preclinical stages would be crucial for future therapy. Diagnostic tools for detection of AD are either invasive like cerebrospinal fluid (CSF) biomarkers or expensive such as positron emission tomography (PET) scanning. Here, we determine the secondary structure change of amyloid‐β (Aβ) in human blood. This change used as blood amyloid biomarker indicates prodromal AD and correlates with CSF AD biomarkers and amyloid PET imaging in the cross‐sectional BioFINDER cohort. In a further population‐based longitudinal cohort (ESTHER), the blood biomarker detected AD several years before clinical diagnosis in baseline samples with a positive likelihood ratio of 7.9; that is, those who were diagnosed with AD over the years were 7.9 times more likely to test positive. This assay may open avenues for blood screening of early AD stages as a funnel for further more invasive and expensive tests.
The misfolding of the Amyloid-beta (Aβ) peptide into β-sheet enriched conformations was proposed as an early event in Alzheimer's Disease (AD). Here, the Aβ peptide secondary structure distribution in cerebrospinal fluid (CSF) and blood plasma of 141 patients was measured with an immuno-infrared-sensor. The sensor detected the amide I band, which reflects the overall secondary structure distribution of all Aβ peptides extracted from the body fluid. We observed a significant downshift of the amide I band frequency of Aβ peptides in Dementia Alzheimer type (DAT) patients, which indicated an overall shift to β-sheet. The secondary structure distribution of all Aβ peptides provides a better marker for DAT detection than a single Aβ misfold or the concentration of a specific oligomer. The discrimination between DAT and disease control patients according to the amide I frequency was in excellent agreement with the clinical diagnosis (accuracy 90% for CSF and 84% for blood). The amide I band maximum above or below the decisive marker frequency appears as a novel spectral biomarker candidate of AD. Additionally, a preliminary proof-of-concept study indicated an amide I band shift below the marker band already in patients with mild cognitive impairment due to AD. The presented immuno-IR-sensor method represents a promising, simple, robust, and label-free diagnostic tool for CSF and blood analysis.
Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy allows a detailed analysis of surface attached molecules, including their secondary structure, orientation, and interaction with small molecules in the case of proteins. Here, we present a universal immobilization technique on germanium for all oligo-histidine-tagged proteins. For this purpose, new triethoxysilane derivates were developed: we synthesized a linker-silane with a succinimidyl ester as amine-reactive headgroup and a matrix-silane with an unreactive ethylene glycol group. A new methodology for the attachment of triethoxysilanes on germanium was established, and the surface was characterized by ATR-FTIR and X-ray photoelectron spectroscopy. In the next step, the succinimidyl ester was reacted with aminonitrilotriacetic acid. Subsequently, Ni(2+) was coordinated to form Ni-nitrilotriacetic acid for His-tag binding. The capability of the functionalized surface was demonstrated by experiments using the small GTPase Ras and photosystem I (PS I). The native binding of the proteins was proven by difference spectroscopy, which probes protein function. The function of Ras as molecular switch was demonstrated by a beryllium trifluoride anion titration assay, which allows observation of the "on" and "off" switching of Ras at atomic resolution. Furthermore, the activity of immobilized PS I was proven by light-induced difference spectroscopy. Subsequent treatment with imidazole removes attached proteins, enabling repeated binding. This universal technique allows specific attachment of His-tagged proteins and a detailed study of their function at the atomic level using FTIR difference spectroscopy.
The secondary structure change of the Abeta peptide to beta‐sheet was proposed as an early event in Alzheimer's disease. The transition may be used for diagnostics of this disease in an early state. We present an Attenuated Total Reflection (ATR) sensor modified with a specific antibody to extract minute amounts of Abeta peptide out of a complex fluid. Thereby, the Abeta peptide secondary structure was determined in its physiological aqueous environment by FTIR‐difference‐spectroscopy. The presented results open the door for label‐free Alzheimer diagnostics in cerebrospinal fluid or blood. It can be extended to further neurodegenerative diseases.
Introduction Alzheimer's disease (AD) diagnosis requires invasive CSF analysis or expensive brain imaging. Therefore, a minimal‐invasive reliable and cost‐effective blood test is requested to power large clinical AD trials at reduced screening failure. Methods We applied an immuno‐infrared sensor to measure the amyloid‐β (Aβ) and tau secondary structure distribution in plasma and CSF as structure‐based biomarkers for AD (61 disease controls, 39 AD cases). Results Within a first diagnostic screening step, the structure‐based Aβ blood biomarker supports AD identification with a sensitivity of 90%. In a second diagnostic validation step, the combined use of the structure‐based CSF biomarkers Aβ and tau excluded false‐positive cases which offers an overall specificity of 97%. Discussion The primary Aβ‐based blood biomarker funnels individuals with suspected AD for subsequent validation of the diagnosis by structure‐based combined analysis of the CSF biomarkers Aβ and tau. Our novel two‐step recruitment strategy substantiates the diagnosis of AD with a likelihood of 29.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.