Ras is a central regulator of cellular signaling pathways. It is mutated in 20-30% of human tumors. To perform its function, Ras has to be bound to a membrane by a posttranslationally attached lipid anchor. Surprisingly, we identified here dimerization of membrane anchored Ras by combining attenuated total reflectance Fourier transform infrared spectroscopy, biomolecular simulations, and Förster resonance energy transfer experiments. By analyzing x-ray structural models and molecular-dynamics simulations, we propose a dimerization interface between α-helices 4 and 5 and the loop between β2 and β3. This seems to explain why the residues D47, E49, R135, R161, and R164 of this interface are influencing Ras signaling in cellular physiological experiments, although they are not positioned in the catalytic site. Dimerization could catalyze nanoclustering, which is well accepted for membrane-bound Ras. The interface could provide a new target for a seemingly novel type of small molecule interfering with signal transduction in oncogenic Ras mutants.
Alzheimer's disease (AD) is currently incurable, but there is general agreement that a minimally invasive blood biomarker for screening in preclinical stages would be crucial for future therapy. Diagnostic tools for detection of AD are either invasive like cerebrospinal fluid (CSF) biomarkers or expensive such as positron emission tomography (PET) scanning. Here, we determine the secondary structure change of amyloid‐β (Aβ) in human blood. This change used as blood amyloid biomarker indicates prodromal AD and correlates with CSF AD biomarkers and amyloid PET imaging in the cross‐sectional BioFINDER cohort. In a further population‐based longitudinal cohort (ESTHER), the blood biomarker detected AD several years before clinical diagnosis in baseline samples with a positive likelihood ratio of 7.9; that is, those who were diagnosed with AD over the years were 7.9 times more likely to test positive. This assay may open avenues for blood screening of early AD stages as a funnel for further more invasive and expensive tests.
Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy allows a detailed analysis of surface attached molecules, including their secondary structure, orientation, and interaction with small molecules in the case of proteins. Here, we present a universal immobilization technique on germanium for all oligo-histidine-tagged proteins. For this purpose, new triethoxysilane derivates were developed: we synthesized a linker-silane with a succinimidyl ester as amine-reactive headgroup and a matrix-silane with an unreactive ethylene glycol group. A new methodology for the attachment of triethoxysilanes on germanium was established, and the surface was characterized by ATR-FTIR and X-ray photoelectron spectroscopy. In the next step, the succinimidyl ester was reacted with aminonitrilotriacetic acid. Subsequently, Ni(2+) was coordinated to form Ni-nitrilotriacetic acid for His-tag binding. The capability of the functionalized surface was demonstrated by experiments using the small GTPase Ras and photosystem I (PS I). The native binding of the proteins was proven by difference spectroscopy, which probes protein function. The function of Ras as molecular switch was demonstrated by a beryllium trifluoride anion titration assay, which allows observation of the "on" and "off" switching of Ras at atomic resolution. Furthermore, the activity of immobilized PS I was proven by light-induced difference spectroscopy. Subsequent treatment with imidazole removes attached proteins, enabling repeated binding. This universal technique allows specific attachment of His-tagged proteins and a detailed study of their function at the atomic level using FTIR difference spectroscopy.
We here report on non-equilibrium targeted Molecular Dynamics simulations as tool for the estimation of protein-ligand unbinding kinetics. With this method, we furthermore investigate the molecular basis determining unbinding rates, correlating simulations with experimental data from SPR kinetics measurements and X-ray crystallography on two small molecule compound libraries bound to the N-terminal domain of the chaperone Hsp90. Within the investigated libraries, we find ligand conformational changes and protein-ligand nonbonded interactions as discriminators for unbinding rates. Ligands with flexible chemical scaffold may remain longer at the protein target if they need to pass through extended conformations upon unbinding, or if they exhibit strong electrostatic and/or van der Waals interactions with the target. Ligands with rigid chemical scaffold can exhibit longer residence times if they need to perform any kind of conformational change for unbinding, while electrostatic interactions with the protein can facilitate unbinding. Our resultsshow that understanding the unbinding pathway and the protein-ligand interactions along this path is crucial for the prediction of small molecule ligands with defined unbinding kinetics. Supporting InformationFour supporting tables, nine supporting figures and additional references (PDF) SMILES annotations (CSV) Accession CodesThe crystallographic coordinates of novel compounds are deposited in the Protein Data Bank under the accession codes 5LRL (2d) and 5LO1 (2j). Authors will release the atomic coordinates and experimental data upon article publication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.