Learning technologies enable interventions in the learning process aiming to improve learning. Learning analytics provides such interventions based on analysis of learner data, which are believed to have beneficial effects on both learning and the learning environment. Literature reporting on the effects of learning analytics interventions on learning allows us to assess in what way learning analytics improves learning. No standard set of operational definitions for learning affected by learning analytics interventions is available. We performed a systematic literature review of 1932 search hits, which yielded 62 key studies. We analyzed how affected learning was operationalized in these key studies and classified operational definitions into three categories: 1) learning environment; 2) learning process; and 3) learning outcome. A deepening analysis yielded a refined classification scheme with 11 subcategories. Most of the analyzed studies relate to either learning outcome or learning process. Only nine of the key studies relate to more than one category. Given the complex nature of applying learning analytics interventions in practice, measuring the effects on a wider spectrum of aspects can give more insight into the workings of learning analytics interventions on the different actors, processes, and outcomes involved. Based on the results of our review, we recommend making deliberate decisions on the (multiple) aspects of learning one tries to improve by applying learning analytics. Our refined classification with examples of operational definitions may help both academics and practitioners doing so, as it allows for a more structured, grounded, and comparable positioning of learning analytics benefits.
Despite the promises of learning analytics and the existence of several learning analytics implementation frameworks, the large-scale adoption of learning analytics within higher educational institutions remains low. Extant frameworks either focus on a specific element of learning analytics implementation, for example, policy or privacy, or lack operationalization of the organizational capabilities necessary for successful deployment. Therefore, this literature review addresses the research question “<em>What capabilities for the successful adoption of learning analytics can be identified in existing literature on big data analytics, business analytics, and learning analytics?”</em> Our research is grounded in resource-based view theory and we extend the scope beyond the field of learning analytics and include capability frameworks for the more mature research fields of big data analytics and business analytics. This paper’s contribution is twofold: 1) it provides a literature review on known capabilities for big data analytics, business analytics, and learning analytics and 2) it introduces a capability model to support the implementation and uptake of learning analytics. During our study, we identified and analyzed 15 key studies. By synthesizing the results, we found 34 organizational capabilities important to the adoption of analytical activities within an institution and provide 461 ways to operationalize these capabilities. Five categories of capabilities can be distinguished – <em>Data, Management, People, Technology</em>, and <em>Privacy & Ethics.</em> Capabilities presently absent from existing learning analytics frameworks concern <em>sourcing and integration, market, knowledge, training, automation, </em>and <em>connectivity</em>. Based on the results of the review, we present the Learning Analytics Capability Model: a model that provides senior management and policymakers with concrete operationalizations to build the necessary capabilities for successful learning analytics adoption.
The educational domain is momentarily witnessing the emergence of learning analyticsa form of data analytics within educational institutes. Implementation of learning analytics tools, however, is not a trivial process. This research-in-progress focuses on the experimental implementation of a learning analytics tool in the virtual learning environment and educational processes of a case organizationa major Dutch university of applied sciences. The experiment is performed in two phases: the first phase led to insights in the dynamics associated with implementing such tool in a practical setting. The secondyet to be conductedphase will provide insights in the use of pedagogical interventions based on learning analytics. In the first phase, several technical issues emerged, as well as the need to include more data (sources) in order to get a more complete picture of actual learning behavior. Moreover, self-selection bias is identified as a potential threat to future learning analytics endeavors when data collection and analysis requires learners to opt in.
Although learning analytics benefit learning, its uptake by higher educational institutions remains low. Adopting learning analytics is a complex undertaking, and higher educational institutions lack insight into how to build organizational capabilities to successfully adopt learning analytics at scale. This paper describes the ex-post evaluation of a capability model for learning analytics via a mixed-method approach. The model intends to help practitioners such as program managers, policymakers, and senior management by providing them a comprehensive overview of necessary capabilities and their operationalization. Qualitative data were collected during pluralistic walk-throughs with 26 participants at five educational institutions and a group discussion with seven learning analytics experts. Quantitative data about the model’s perceived usefulness and ease-of-use was collected via a survey (n = 23). The study’s outcomes show that the model helps practitioners to plan learning analytics adoption at their higher educational institutions. The study also shows the applicability of pluralistic walk-throughs as a method for ex-post evaluation of Design Science Research artefacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.