BackgroundMercury is a toxic metal with its effects on human health ranging from acute to chronic in a very short time of exposure. Artisanal and small-scale gold mining (ASGM) is the main source of direct human exposure to mercury.AimTo access the effect of mercury exposure on the renal function and level of personal protective equipment (PPE) compliance among small-scale gold miners in Bibiani District of the Western Region of GhanaMethod110 consenting male gold miners were purposively recruited for this study. A structured questionnaire was used to collect socio-demographic information from the participants. Work place assessment and interviews were conducted. Urine samples were analysed for protein; blood was analysed for mercury and creatinine. Estimated glomerular filtration rate (eGFR) was calculated using the chronic kidney disease-epidemiology collaboration (CKD-EPI) equation.ResultsOf the 110 participants, 61(55.5%) exceeded the occupational exposure threshold (blood mercury <5μg/L). Urine protein (41.72±68.34, P<0.0001), serum creatinine (2.24±1.19, P<0.0001) and blood mercury (18.37±10.47, P<0.0001) were significantly elevated among the exposed group compared to the non-exposed group. However, the exposed group had a significantly reduced eGFR (P<0.0001). There was a significant correlation (r=0.7338, p<0.0001) between blood mercury concentration and urine protein concentration. An increase in blood mercury correlated negatively (r = −0.8233, P<0.0001) with eGFR among the exposed group. High urine protein (P< 0.0001) and high serum creatinine (P< 0.0001) were significantly associated with increased mercury exposure. Increased mercury exposure was significantly associated with burning of amalgam (P=0.0196), sucking of excess mercury (P=0.0336), longer work duration (P=0.0314) and low educational background (P=0.0473).ConclusionSmall scale miners at the Bibiani work site are exposed to excess mercury. Proteinuria and reduced eGFR is common in mine workers exposed to excess mercury. We found poor PPE compliance among the study population.
Background. Despite the recent advancement in diagnostic methods, the smear microscopy remains the gold standard for the diagnosis of pulmonary tuberculosis in high burden countries like Ghana. Notwithstanding, fluorescence staining technique provides a more efficient option for the detection of Mycobacterium tuberculosis positive smears. This study therefore aimed at assessing the diagnostic performance of fluorescence microscopy (FM) and Ziehl-Neelsen (ZN) staining techniques in the diagnosis of pulmonary tuberculosis. Methods. A comparative study was carried out on 100 patients who reported at the Out Patients Department (OPD) or the Directly Observed Therapy (DOT) center of the Kade Government Hospital and were suspected of having pulmonary tuberculosis. Two (2) sputum samples each were collected. This included one spot and one morning sample. The smears were prepared and stained with FM and ZN staining techniques. Xpert MTB/RIF assay was also performed. Results. Of the 200 samples analyzed, 71 (35.5%), 46 (23.0%), and 84 (42.0%) were positive for pulmonary tuberculosis when FM, ZN, and XPERT MTB/RIF assays were used, respectively. The mean reading time of FM was three times faster than the ZN technique with very good acceptance (1.5min: 4.6min). The sensitivity and specificity of fluorescent staining to that of XPERT MTB/RIF assay were 84.5% and 100%, respectively, while those of ZN staining were 54.8% and 100%, respectively. Conclusion. For a routine laboratory test in a resource-limited setting, our study has demonstrated that fluorescence staining technique is a more sensitive test for the diagnosis of pulmonary tuberculosis as compared to the conventional ZN technique.
Artisanal small-scale mining is widely operated in various countries serving as a livelihood to many rural communities. However, it is a significant source of environmental mercury contamination which affects human health. Amalgamation and amalgam smelting, two significant steps in the artisanal small-scale mining operations generate lots of mercury vapors, leading to chronic exposure among miners. Thus, this article seeks to provide a topical review of recent findings on organ damage and metabolic disorders among mercury-exposed artisanal small-scale miners with emphasis on the contributing factors such as personal protective equipment usage and artisanal small-scale gold mining-specific occupational activities. Also, insights into the effect of mercury intoxication and mechanisms of action on organ and metabolic systems among exposed individuals are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.