This study uses Time Series models to predict the annual traffic accidents in Ghana. The traffic accidents data spanning from January 1990 to December 2019 was used. The Box-Jenkins model building strategy was used. The Augmented Dickey Fuller (ADF) test showed that the accident data was stationary. Three ARMA models were suggested based on the ACF and PACF plots of the differenced series, these were ARMA (0,0), ARIMA (1,0), and ARMA (2,0). The model with the smallest corrected Akaike Information Criteria (AICs) and Bayesian Information Criteria (BIC) was chosen as the best model. The Ljung-Box statistics among others were used in assessing the quality of the model. ARMA (1,0) was the best model for the Ghana annual Traffic Accident data. The results showed that, from January to July, it would be difficult to make accurate estimates of the number of road incidents for the years leading up to 2020. This was due to the fact that the white noise process values were statistically independent at various times.
The Sarima model is used in this study to forecast the monthly temperature in Ghana's northern region. The researchers used temperature data from January 1990 to December 2020. The temperature data was found to be stationary using the Augmented Dickey Fuller (ADF) test. The ACF and PACF plots proposed six SARIMA models: SARIMA (1,0,0) (1,0,0) (12), SARIMA (2,0,0) (1,0,0) (12), SARIMA (1,0,1) (1,0,0) (12), SARIMA (0,0,1) (1,0,0) (12), SARIMA (0,0,1) (0,0,1) (12), SARIMA (0,0,1) (0,0,1) (12). The best model was chosen based on the lowest Akaike Information Criteria (AICs) and Bayesian Information Criteria (BIC) values. The Ljung-Box data, among others, were used to determine the model's quality. All diagnostic tests are passed by the SARIMA (1,0,0) (1,0,0) (12) model. As a result, the SARIMA (1,0,0) (1,0,0) (12) is the best-fitting model for predicting monthly temperatures in Ghana's northern region.
This research combines Particle Swarm Optimization (PSO) with Crossover and Mutation Operators of Genetic Algorithm (GA) to produce a hybrid optimization algorithm to solve a routing problem identified at Zoomlion Ghana Limited, Sekondi Takoradi branch. PSO is known to converge prematurely and can be trapped into a local minimum especially with complex problems. On the other hand, GA is a robust and works well with discrete and continuous problems. The Crossover and Mutation operations of GA makes the iterations converges faster and are reliable. The hybrid algorithm therefore merges these operators into PSO to produce a more reliable optimal solution. The hybrid algorithm was then used to solve the routing problem identified at Zoomlion Ghana Limited, Sekondi Takoradi branch. A total of 160 public waste bin centers scattered in the metropolis and the distance between them were considered. The main aim was to determine the best combination of the set of routes connecting all the bin centers in the municipality that will produce the shortest optimal route for the study. MATLAB simulation was run of the list of distances to determine the optimal route. After 10,000 iterations, PSO produced an optimal result of 81.6 km, GA produced an optimal result of 88.9 km and the proposed hybrid model produced an optimal result of 79.9 km
This work presents an ensemble method which combines both the strengths and weakness of particle swarm optimization (PSO) with genetic algorithm (GA) operators like crossover and mutation to solve the vehicle routing problem. Given that particle swarm optimization and genetic algorithm are both population-based heuristic search evolutionary methods as used in many fields, the standard particle swarm optimization stagnates particles more quickly and converges prematurely to suboptimal solutions which are not guaranteed to be local optimum. Although both PSO and GA are approximation methods to an optimization problem, these algorithms have their limitations and benefits. In this study, modifications are made to the original algorithmic structure of PSO by updating it with some selected GA operators to implement a hybrid algorithm. A computational comparison and analysis of the results from the non-hybrid algorithm and the proposed hybrid algorithm on a MATLAB simulation environment tool show that the hybrid algorithm performs quite well as opposed to using only GA or PSO.
The aim of this study was to develop a hybrid optimization model for solving the routing problem identified at Zoomlion Ghana Limited in Shama district in the Western Region of Ghana. Two main optimization models were considered: Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). A hybrid algorithm was developed from the two by merging crossover and mutation operators of GA with PSO. A sample of 20 breakpoints was run through 10,000 iterations for all the models and the results of the proposed hybrid model was compared with PSO and GA separately. The optimal results of PSO, GA and the proposed models are 1160.6km, 1190.3km and 1132.3km respectively. The proposed model’s results were also compared with other hybrid models to test the robustness of the new model. This result was achieved because the new model eliminates the low convergence rate in PSO and also prevents it from easily falling into local optimum in high-dimensional space and the inclusion of crossover and mutation operators of GA improves the diversity of the iterations. After the iterations, PSO reduced a field distance of 1700 km to 1160.6 km within 780.4098 seconds. GA on the other hand reduced the same field distance of 1700 km to 1190.3km within 397.3308 seconds. The proposed hybrid model reduced the same field distance from 1700 km to 1132.3 km within 550.2527 seconds. This indicates that the proposed hybrid model performed better than PSO and GA separately. A performance test between the proposed hybrid model and other hybrid models showed that merging crossover and mutation operators into PSO gives a better optimal result. MATLAB was used for the iterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.