In spite of sustained efforts tertiary institutions implement to try and improve student academic performance, the number of students succeeding in first-year mathematics courses remains disturbingly low. For most students, the gap between their mathematical capability and the competencies they are expected and need to develop to function effectively in these courses persists even after course instruction. In this study, an instrument for identifying and examining factors affecting student performance and success in a first-year Mathematics university course was developed and administered to 86 students. The overall Cronbach's Alpha coefficient for the questionnaire was found to be 0.916. Having identified variables from prior research known to affect student performance, factor analysis was used to identify variables exhibiting the greatest impact on student performance. The variables included prior academic knowledge, workload, student approaches to learning, assessment, student support teaching quality, methods and resources. From the analysis, students' perceptions of their workload emerged as the factor having the greatest impact on student's performance, followed by the matriculation examination score. The findings are discussed and strategies that can be used to improve teaching and contribute to student success in a first-year mathematics course in a South African context are presented.
<abstract> <p>The human life-threatening novel Severe Acute Respiratory Syndrome Corona-virus-2 (SARS-CoV-2) has lasted for over a year escalating and posing simultaneous anxiety day-by-day globally since its first report in the late December 2019. The scientific arena has been kept animated via continuous investigations in an effort to understand the spread dynamics and the impact of various mitigation measures to keep this pandemic diminished. Despite a lot of research works having been accomplished this far, the pandemic is still deep-rooted in many regions worldwide signaling for more scientific investigations. This study joins the field by developing a modified SEIR (Susceptible-Exposed-Infectious-Removed) compartmental deterministic model whose key distinct feature is the incorporation of the COVID Alert SA app use by the general public in prolific intention to control the spread of the epidemic. Validation of the model is performed by fitting the model to the Republic of South Africa's COVID-19 cases reported data using the Maximum Likelihood Estimation algorithm implemented in fitR package. The model's sensitivity analysis and simulations stipulate that gradual to complete use of the app would be perfect in contact tracing and substantially reduce the plateau number of COVID-19 infections. This would consequentially contribute remarkably to the eradication of the SARS-CoV-2 over time. Proportional amalgamation of the app use and test for COVID-19 on individuals not using the app would also reduce the peak number of infections apart from the 50 – 50% ratio which spikes the plateau number beyond any other proportion. The study establishes that at least 30% implementation of the app use with gradual increase in tests conducted for individuals not using the app would suffice to stabilize the disease free equilibrium resulting to gradual eradication of the pandemic.</p> </abstract>
A campaign for malaria control, using Long Lasting Insecticide Nets (LLINs) was launched in South Sudan in 2009. The success of such a campaign often depends upon adequate available resources and reliable surveillance data which help officials understand existing infections. An optimal allocation of resources for malaria control at a sub-national scale is therefore paramount to the success of efforts to reduce malaria prevalence. In this paper, we extend an existing SIR mathematical model to capture the effect of LLINs on malaria transmission. Available data on malaria is utilized to determine realistic parameter values of this model using a Bayesian approach via Markov Chain Monte Carlo (MCMC) methods. Then, we explore the parasite prevalence on a continued rollout of LLINs in three different settings in order to create a sub-national projection of malaria. Further, we calculate the model’s basic reproductive number and study its sensitivity to LLINs’ coverage and its efficacy. From the numerical simulation results, we notice a basic reproduction number, , confirming a substantial increase of incidence cases if no form of intervention takes place in the community. This work indicates that an effective use of LLINs may reduce and hence malaria transmission. We hope that this study will provide a basis for recommending a scaling-up of the entry point of LLINs’ distribution that targets households in areas at risk of malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.