We compute the phase lags between the radial velocity curves and the light curves $\Delta \Phi_1= \phi^{V_r}_1 - \phi^{mag}_1$ for classical Cepheid model sequences both in the linear and the nonlinear regimes. The nonlinear phase lags generally fall below the linear ones except for high period models where they lie above, and of course for low pulsation amplitudes where the two merge. The calculated phase lags show good agreement with the available observational data of normal amplitude Galactic Cepheids. The metallicity has but a moderate effect on the phase lag, while the mass-luminosity relation and the parameters of the turbulent convective model (time-dependent mixing length) mainly influence the modal selection and the period, which is then reflected in the period -- $\Delta \Phi_1$ diagram. We discuss the potential application of this observable as a discriminant for pulsation modes and as a test for ultra-low amplitudes (ULA) pulsation.Comment: 11 pages, 8 figures, accepted for publication in ApJ, minor revisions in the text and figures, (black and white version available from 2nd author's website
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.