Matrix completion based collaborative filtering is considered scalable and effective for online service link prediction (e.g., movie recommendation) but does not meet the challenges of link prediction in ecological networks. A unique challenge of ecological networks is that the observed data are subject to systematic imperfect detection, due to the difficulty of accurate field sampling. In this work, we propose a new framework customized for ecological bipartite network link prediction. Our approach starts with incorporating the Poisson N -mixture model, a widely used framework in statistical ecology for modeling imperfect detection of a single species in field sampling. Despite its extensive use for single species analysis, this model has never been considered for link prediction between different species, perhaps because of the complex nature of both link prediction and N -mixture model inference. By judiciously combining the Poisson N -mixture model with a probabilistic nonnegative matrix factorization (NMF) model in latent space, we propose an intuitive statistical model for the problem of interest. We also offer a scalable and convergence-guaranteed optimization algorithm to handle the associated maximum likelihood identification problem. Experimental results on synthetic data and two real-world ecological networks data are employed to validate our proposed approach. . Her research is at the intersection of machine learning and ecology, including computational sustainability, species distribution modeling, hierarchical latent variable models, and robust parameter estimation methods.
Background: Real-life validation is necessary to ensure our artificial intelligence (AI) skin diagnostic tool is inclusive across a diverse and representative US population of various ages, ancestries and skin phototypes.Objectives: To explore the relevance and accuracy of an automated, algorithm-based analysis of facial signs in representative women of different ancestries, ages and phototypes, living in the same country.
Methods:In a cross-sectional study of selfie images of 1041 US women, algorithmbased analyses of seven facial signs were automatically graded by an AI-based algorithm and by 50 US dermatologists of various profiles (age, gender, ancestry, geographical location). For automated analysis and dermatologist assessment, the same referential skin atlas was used to standardize the grading scales. The average values and their variability were compared with respect to age, ancestry and phototype.Results: For five signs, the grading obtained by the automated system were strongly correlated with dermatologists' assessments (r ≥ 0.75); cheek skin pores were moderately correlated (r = 0.63) and pigmentation signs, especially for the darkest skin tones, were weakly correlated (r = 0.40) to the dermatologist assessments. Age and ancestry had no effect on the correlations. In many cases, the automated system performed better than the dermatologist-assessed clinical grading due to 0.3-0.5 grading unit differences among the dermatologist panel that were not related to any individual characteristic (e.g. gender, age, ancestry, location). The use of phototypes, as discontinuous categorical variables, is likely a limiting factor in the assessments of grading, whether obtained by automated analysis or clinical assessment of the images.
Conclusions:The AI-based automatic procedure is accurate and clinically relevant for analysing facial signs in a diverse and inclusive population of US women, as confirmed by a diverse panel of dermatologists, although skin tone requires further improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.