Neuroimaging and postmortem studies of subjects with major depressive disorder (MDD) reveal smaller hippocampal volume with lengthening duration of illness. Pathology in astrocytes may contribute significantly to this reduced volume and to the involvement of the hippocampus in MDD. Postmortem hippocampal tissues were collected from 17 subjects with major depressive disorder and 17 psychiatrically-normal control subjects. Sections from the body of the hippocampus were immunostained for glial fibrillary acidic protein (GFAP), a marker of intermediate filament protein expressed in astrocytes. The density of GFAP-immunoreactive astrocytes was measured in the hippocampus using 3-dimensional cell counting. Hippocampal subfields were also assessed for GFAP-immunoreactive area fraction. In CA1, there was a significant positive correlation between age and either density or area fraction in MDD. The density of astrocytes in the hilus, but not CA1 or CA2/3, was significantly decreased only in depressed subjects not taking an antidepressant drug, but not for depressed subjects taking an antidepressant drug. The area fraction of GFAP-immunoreactivity was significantly decreased in the dentate gyrus in women but not men with depression. In CA2/3, the area fraction of GFAP-immunoreactivity was inversely correlated with the duration of depression in suicide victims. Astrocyte contributions to neuronal function in the hilus may be compromised in depressed subjects not taking antidepressant medication. Due to the cross-sectional nature of the present study of postmortem brain tissue, it remains to be determined whether antidepressant drug treatment prevented a decrease in GFAP-immunoreactive astrocyte density or restored cell density to normal levels.
Neuroimaging consistently reveals smaller hippocampal volume in recurrent or chronic major depressive disorder (MDD). The underlying cellular correlates of the smaller volume are not clearly known. Postmortem tissues from 17 pairs of depressed and control subjects were obtained at autopsy, and informant-based retrospective psychiatric assessment was performed. Formalin-fixed left temporal lobes were sectioned (40 μm), stained for Nissl substance, and every 60th section selected throughout the entire hippocampus. Total volume of the hippocampal formation was calculated, and total numbers of pyramidal neurons (in hippocampal fields CA1, CA2/3, hilus), dentate gyrus (DG) granule cells, and glial cells were estimated stereologically. While hippocampal volume in all MDD subjects was not significantly smaller versus control subjects, in recurrent/chronic MDD, total volume decreased with duration of depressive illness (r=−0.696, p<0.026). There was no significant difference between MDD and controls in total number or density of pyramidal neurons/granule cells or glial cells in CA1, CA2/3, hilus, or DG. However, CA1 pyramidal neuron density increased with duration of illness in recurrent/chronic MDD (r=0.840, p<0.002). Granule cell (r=0.971, p<0.002) and glial cell numbers (r=0.980, p<0.001) increased with age in those taking antidepressant medication (n=6). Increasing DG granule cell and glial cell numbers with age in antidepressant-treated subjects may reflect proliferative effects of antidepressant medications. Decreasing total volume and increasing CA1 pyramidal neuron density with duration of illness in recurrent/chronic MDD lends support to the neuropil hypothesis of MDD.
The use of tamoxifen‐inducible models of Cre recombinase in the tendon field is rapidly expanding, resulting in an enhanced understanding of tendon homeostasis and healing. However, the effects of tamoxifen on the tendon are not well‐defined, which is particularly problematic given that tamoxifen can have both profibrotic and antifibrotic effects in a tissue‐specific manner. Therefore, in the present study, we examined the effects of tamoxifen on tendon homeostasis and healing in male and female C57Bl/6J mice. Tamoxifen‐treated mice were compared to corn oil (vehicle)‐treated mice. In the “washout” treatment regimen, mice were treated with tamoxifen or corn oil for 3 days beginning 1 week prior to undergoing complete transection and surgical repair of the flexor digitorum longus tendon. In the second regimen, mice were treated with tamoxifen or corn oil beginning on the day of surgery, daily through day 2 postsurgery, and every 48 hours thereafter (D0‐2q48) until harvest. All repaired tendons and uninjured contralateral control tendons were harvested at day 14 postsurgery. Tamoxifen treatment had no effect on tendon healing in male mice, regardless of the treatment regimen, while Max load was significantly decreased in female repairs in the Tamoxifen washout group, relative to corn oil. In contrast, D0‐2q48 corn oil treatment in female mice led to substantial disruptions in tendon homeostasis, relative to washout corn oil treatment. Collectively, these data clearly define the functional effects of tamoxifen and corn oil treatment in the tendon and inform future use of tamoxifen‐inducible genetic models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.