Fractional partial differential equations (FDEs) are used to describe phenomena that involve a "non-local" or "longrange" interaction of some kind. Accurate and practical numerical approximation of their solutions is challenging due to the dense matrices arising from standard discretization procedures. In this paper, we begin to extend the well-established computational toolkit of Discrete Exterior Calculus (DEC) to the fractional setting, focusing on proper discretization of the fractional derivative. We define a Caputo-like fractional discrete derivative, in terms of the standard discrete exterior derivative operator from DEC, weighted by a measure of distance between p-simplices in a simplicial complex. We discuss key theoretical properties of the fractional discrete derivative and compare it to the continuous fractional derivative via a series of numerical experiments.
We present an implementation of the trimmed serendipity finite element family, using the open-source finite element package Firedrake. The new elements can be used seamlessly within the software suite for problems requiring
H
1
,
H
(curl), or
H
(div)-conforming elements on meshes of squares or cubes. To test how well trimmed serendipity elements perform in comparison to traditional tensor product elements, we perform a sequence of numerical experiments including the primal Poisson, mixed Poisson, and Maxwell cavity eigenvalue problems. Overall, we find that the trimmed serendipity elements converge, as expected, at the same rate as the respective tensor product elements, while being able to offer significant savings in the time or memory required to solve certain problems.
We present an implementation of the trimmed serendipity finite element family, using the open source finite element package Firedrake. The new elements can be used seamlessly within the software suite for problems requiring 𝐻 1 , 𝐻 (curl), or 𝐻 (div)-conforming elements on meshes of squares or cubes. To test how well trimmed serendipity elements perform in comparison to traditional tensor product elements, we perform a sequence of numerical experiments including the primal Poisson, mixed Poisson, and Maxwell cavity eigenvalue problems. Overall, we find that the trimmed serendipity elements converge, as expected, at the same rate as the respective tensor product elements while being able to offer significant savings in the time or memory required to solve certain problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.