When we run our fingers over the surface of an object, we acquire information about its microgeometry and material properties. Texture information is widely believed to be conveyed in spatial patterns of activation evoked across one of three populations of cutaneous mechanoreceptive afferents that innervate the fingertips. Here, we record the responses evoked in individual cutaneous afferents in Rhesus macaques as we scan a diverse set of natural textures across their fingertips using a custom-made rotating drum stimulator. We show that a spatial mechanism can only account for the processing of coarse textures. Information about most natural textures, however, is conveyed through precise temporal spiking patterns in afferent responses, driven by high-frequency skin vibrations elicited during scanning. Furthermore, these texture-specific spiking patterns predictably dilate or contract in time with changes in scanning speed; the systematic effect of speed on neuronal activity suggests that it can be reversed to achieve perceptual constancy across speeds. The proposed temporal coding mechanism involves converting the fine spatial structure of the surface into a temporal spiking pattern, shaped in part by the mechanical properties of the skin, and ascribes an additional function to vibration-sensitive mechanoreceptive afferents. This temporal mechanism complements the spatial one and greatly extends the range of tangible textures. We show that a combination of spatial and temporal mechanisms, mediated by all three populations of afferents, accounts for perceptual judgments of texture.spike timing | roughness | touch | psychophysics | neurophysiology O ur exquisite tactile sensitivity to surface texture allows us to distinguish silk from satin, or even good silk from cheap silk. However, the neural basis for our ability to identify individual textures has never been investigated. Natural textures can comprise very fine textural features, on the order of micrometers, but also coarser ones on the order of millimeters. Surface features sized over many orders of magnitude must then be fused to yield a unitary percept of texture. At the coarse extreme of this range, Braille dots and gratings have been shown to be encoded in the spatial pattern of activation elicited in slowly adapting type 1 (SA1) afferents (1-4), which densely innervate the primate fingertip. Specifically, the spatial layout of surface features is reflected in the spatial layout of the SA1 response across the sensory sheet, so information about texture can be read out from this neural image, a mechanism that draws an analogy to vision. The most compelling evidence implicating this spatial mechanism in texture perception stems from an elegant series of studies that demonstrate that one of the major perceptual attributes of a textured surface, its roughness, can be predicted from the spatial pattern of activation it elicits in SA1 afferents (1-3). However, most natural textures comprise features that are too fine to be resolved through a spatially modulate...
In the somatosensory nerves, the tactile perception of texture is driven by spatial and temporal patterns of activation distributed across three populations of afferents. These disparate streams of information must then be integrated centrally to achieve a unified percept of texture. To investigate the representation of texture in somatosensory cortex, we scanned a wide range of natural textures across the fingertips of rhesus macaques and recorded the responses evoked in Brodmann’s areas 3b, 1, and 2. We found that texture identity is reliably encoded in the idiosyncratic responses of populations of cortical neurons, giving rise to a high-dimensional representation of texture. Cortical neurons fall along a continuum in their sensitivity to fine vs. coarse texture, and neurons at the extrema of this continuum seem to receive their major input from different afferent populations. Finally, we show that cortical responses can account for several aspects of texture perception in humans.
Roughness is the most salient perceptual dimension of surface texture but has no well-defined physical basis. We seek to determine the neural determinants of tactile roughness in the somatosensory nerves. Specifically, we record the patterns of activation evoked in tactile nerve fibers of anesthetized Rhesus macaques to a large and diverse set of natural textures and assess what aspect of these patterns of activation can account for psychophysical judgments of roughness, obtained from human observers. We show that perceived roughness is determined by the variation in the population response, weighted by fiber type. That is, a surface will feel rough to the extent that the activity varies across nerve fibers and varies across time within nerve fibers. We show that this variation-based neural code can account not only for magnitude estimates of roughness but also for roughness discrimination performance. Our sense of touch endows us with an exquisite sensitivity to the microstructure of surfaces, the most salient aspect of which is roughness. We analyze the responses evoked in tactile fibers of monkeys by natural textures and compare them to judgments of roughness obtained for the same textures from human observers. We then describe how texture signals from three populations of nerve fibers are integrated to culminate in a percept of roughness.
In the somatosensory nerves, the tactile perception of texture is driven by spatial and temporal patterns of activation distributed across three populations of afferents. These disparate streams of information must then be integrated centrally to achieve a unified percept of texture. To investigate the representation of texture in somatosensory cortex, we scanned a wide range of natural textures across the fingertips of Rhesus macaques and recorded the responses evoked in Brodmann's areas 3b, 1, and 2. We found that texture identity is reliably encoded in the idiosyncratic responses of populations of cortical neurons, giving rise to a high-dimensional representation of texture. Cortical neurons fall along a continuum in their sensitivity to fine vs. coarse texture, and neurons at the extrema of this continuum seem to receive their major input from different afferent populations. Finally, we show that cortical responses can account for several aspects of texture perception in humans.
Motion is an essential component of everyday tactile experience: most manual interactions involve relative movement between the skin and objects. Much of the research on the neural basis of tactile motion perception has focused on how direction is encoded, but less is known about how speed is. Perceived speed has been shown to be dependent on surface texture, but previous studies used only coarse textures, which span a restricted range of tangible spatial scales and provide a limited window into tactile coding. To fill this gap, we measured the ability of human observers to report the speed of natural textures—which span the range of tactile experience and engage all the known mechanisms of texture coding—scanned across the skin. In parallel experiments, we recorded the responses of single units in the nerve and in the somatosensory cortex of primates to the same textures scanned at different speeds. We found that the perception of speed is heavily influenced by texture: some textures are systematically perceived as moving faster than are others, and some textures provide a more informative signal about speed than do others. Similarly, the responses of neurons in the nerve and in cortex are strongly dependent on texture. In the nerve, although all fibers exhibit speed-dependent responses, the responses of Pacinian corpuscle–associated (PC) fibers are most strongly modulated by speed and can best account for human judgments. In cortex, approximately half of the neurons exhibit speed-dependent responses, and this subpopulation receives strong input from PC fibers. However, speed judgments seem to reflect an integration of speed-dependent and speed-independent responses such that the latter help to partially compensate for the strong texture dependence of the former.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.