Protein glycosylation pathways have been identified in a variety of bacteria and are best understood in pathogens and commensals in which the glycosylation targets are cell surface proteins, such as S layers, pili, and flagella. In contrast, very little is known about the glycosylation of bacterial enzymes, especially those secreted by cellulolytic bacteria. Caldicellulosiruptor bescii secretes several unique synergistic multifunctional biomass-degrading enzymes, notably cellulase A which is largely responsible for this organism’s ability to grow on lignocellulosic biomass without the conventional pretreatment. It was recently discovered that extracellular CelA is heavily glycosylated. In this work, we identified an O-glycosyltransferase in the C. bescii chromosome and targeted it for deletion. The resulting mutant was unable to grow on crystalline cellulose and showed no detectable protein glycosylation. Multifunctional biomass-degrading enzymes in this strain were rapidly degraded. With the genetic tools available in C. bescii, this system represents a unique opportunity to study the role of bacterial enzyme glycosylation as well an investigation of the pathway for protein glycosylation in a non-pathogen.Electronic supplementary materialThe online version of this article (10.1186/s13068-018-1266-x) contains supplementary material, which is available to authorized users.
Campylobacter fetus is commonly associated with venereal disease and abortions in cattle and sheep, and can also cause intestinal or systemic infections in humans that are immunocompromised, elderly, or exposed to infected livestock. It is also believed that C. fetus infection can result from the consumption or handling of contaminated food products, but C. fetus is rarely detected in food since isolation methods are not suited for its detection and the physiology of the organism makes culturing difficult. In the related species, Campylobacter jejuni, the ability to colonize the host has been linked to N-linked protein glycosylation with quantitative proteomics demonstrating that glycosylation is interconnected with cell physiology. Using label-free quantitative (LFQ) proteomics, we found more than 100 proteins significantly altered in expression in two C. fetus subsp. fetus protein glycosylation (pgl) mutants (pglX and pglJ) compared to the wild-type. Significant increases in the expression of the (NiFe)-hydrogenase HynABC, catalyzing H 2-oxidation for energy harvesting, correlated with significantly increased levels of cellular nickel, improved growth in H 2 and increased hydrogenase activity, suggesting that N-glycosylation in C. fetus is involved in regulating the HynABC hydrogenase and nickel homeostasis. To further elucidate the function of the C. fetus pgl pathway and its enzymes, heterologous expression in Escherichia coli followed by mutational and functional analyses revealed that PglX and PglY are novel glycosyltransferases involved in extending the C. fetus hexasaccharide beyond the conserved core, while PglJ and PglA have similar activities to their homologs in C. jejuni. In addition, the pgl mutants displayed decreased motility and ethidium bromide efflux and showed an increased sensitivity to antibiotics. This work not only provides insight into the unique protein N-glycosylation pathway of C. fetus, but also expands our knowledge on the influence of protein N-glycosylation on Campylobacter cell physiology.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.