Graphitic carbon nitride (g-CN) has recently emerged as a promising visible-light-responsive polymeric photocatalyst; however, a molecular-level understanding of material properties and its application for water purification were underexplored. In this study, we rationally designed nonmetal doped, supramolecule-based g-CN with improved surface area and charge separation. Density functional theory (DFT) simulations indicated that carbon-doped g-CN showed a thermodynamically stable structure, promoted charge separation, and had suitable energy levels of conduction and valence bands for photocatalytic oxidation compared to phosphorus-doped g-CN. The optimized carbon-doped, supramolecule-based g-CN showed a reaction rate enhancement of 2.3-10.5-fold for the degradation of phenol and persistent organic micropollutants compared to that of conventional, melamine-based g-CN in a model buffer system under the irradiation of simulated visible sunlight. Carbon-doping but not phosphorus-doping improved reactivity for contaminant degradation in agreement with DFT simulation results. Selective contaminant degradation was observed on g-CN, likely due to differences in reactive oxygen species production and/or contaminant-photocatalyst interfacial interactions on different g-CN samples. Moreover, g-CN is a robust photocatalyst for contaminant degradation in raw natural water and (partially) treated water and wastewater. In summary, DFT simulations are a viable tool to predict photocatalyst properties and oxidation performance for contaminant removal, and they guide the rational design, fabrication, and implementation of visible-light-responsive g-CN for efficient, robust, and sustainable water treatment.
Depth-controlled beta-NMR can be used to probe the magnetic properties of thin films and interfaces on a nanometer length scale. A 30 keV beam of highly spin-polarized 8Li+ ions was slowed down and implanted into a 50 nm film of Ag deposited on a SrTiO3 substrate. A novel high field beta-NMR spectrometer was used to observe two well resolved resonances which are attributed to Li occupying substitutional and octahedral interstitial sites in the Ag lattice. The temperature dependence of the Knight shifts and spin relaxation rates are consistent with the Korringa law for a simple metal, implying that the NMR of implanted 8Li reflects the spin suspectibility of bulk metallic silver.
Master equations are increasingly popular for the simulation of time–dependent electronic transport in nanoscale devices. Several recent Markovian approaches use “extended reservoirs” – explicit degrees of freedom associated with the electrodes – distinguishing them from many previous classes of master equations. Starting from a Lindblad equation, we develop a common foundation for these approaches. Due to the incorporation of explicit electrode states, these methods do not require a large bias or even “true Markovianity” of the reservoirs. Nonetheless, their predictions are only physically relevant when the Markovian relaxation is weaker than the thermal broadening and when the extended reservoirs are “sufficiently large,” in a sense that we quantify. These considerations hold despite complete positivity and respect for Pauli exclusion at any relaxation strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.