Motivated by the desire to gain insight into the details of conventional airborne synthetic aperture radar (SAR) imaging of trees, a ground-based SAR system designed for short-range three-dimensional (3D) radar imaging is developed using a two-dimensional (2D) synthetic aperture. The heart of the system is a compact linear frequency modulation-continuous wave (LFM-CW) radar, a custom two-dimensional scan mechanism, and a three-dimensional time-domain backprojection algorithm that generates three-dimensional backscatter images at an over-sampled resolution of 10 cm by 10 cm by 10 cm. The backprojection algorithm is formulated directly in spatial coordinates. A new method for estimating and compensating for signal attenuation within the canopy is used that exploits the backprojection image formation approach. Several three-dimensional C-band backscatter images of different individual trees of multiple species are generated from data collected for trees both in isolation and near buildings. The trees imaged in this study are about 10 m in height. The transformation of the three-dimensional images to airborne SAR images is described and a sample result provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.