Transcription factor (TF) networks are thought to regulate embryonic stem cell (ESC) pluripotency. However, TF expression dynamics and regulatory mechanisms are poorly understood. We use reporter mouse ESC lines allowing non-invasive quantification of Nanog or Oct4 protein levels and continuous long-term single-cell tracking and quantification over many generations to reveal diverse TF protein expression dynamics. For cells with low Nanog expression, we identified two distinct colony types: one re-expressed Nanog in a mosaic pattern, and the other did not re-express Nanog over many generations. Although both expressed pluripotency markers, they exhibited differences in their TF protein correlation networks and differentiation propensities. Sister cell analysis revealed that differences in Nanog levels are not necessarily accompanied by differences in the expression of other pluripotency factors. Thus, regulatory interactions of pluripotency TFs are less stringently implemented in individual self-renewing ESCs than assumed at present.
Many cellular effectors of pluripotency are dynamically regulated. In principle, regulatory mechanisms can be inferred from single-cell observations of effector activity across time. However, rigorous inference techniques suitable for noisy, incomplete, and heterogeneous data are lacking. Here, we introduce stochastic inference on lineage trees (STILT), an algorithm capable of identifying stochastic models that accurately describe the quantitative behavior of cell fate markers observed using time-lapse microscopy data collected from proliferating cell populations. STILT performs exact Bayesian parameter inference and stochastic model selection using a particle-filter-based algorithm. We use STILT to investigate the autoregulation of Nanog, a heterogeneously expressed core pluripotency factor, in mouse embryonic stem cells. STILT rejects the possibility of positive Nanog autoregulation with high confidence; instead, model predictions indicate weak negative feedback. We use STILT for rational experimental design and validate model predictions using novel experimental data. STILT is available for download as an open source framework from http://www.imsb.ethz.ch/research/claassen/Software/stilt---stochastic-inference-on-lineage-trees.html.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.