We present a concerted international effort to cross‐calibrate five synthetic Th isotope reference materials (UCSC Th “A”, OU Th “U”, WUN, IRMM‐35 and IRMM‐36), and six rock reference materials (UCSC TML, Icelandic ATHO, USGS BCR‐2, USGS W‐2, USGS BHVO‐2, LV18) using multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS). We then compare our new values with a compilation of literature mass spectrometric data for these reference materials and derive recommended “consensus”230Th/232Th values for each. We also present isotope dilution U and Th concentration data for four rock reference materials (UCSC TML, Icelandic ATHO, USGS BCR‐2, USGS W‐2).
The loss of genetic and life history diversity has been documented across many taxonomic groups, and is considered a leading cause of increased extinction risk. Juvenile salmon leave their natal rivers at different sizes, ages and times of the year, and it is thought that this life history variation contributes to their population sustainability, and is thus central to many recovery efforts. However, in order to preserve and restore diversity in life history traits, it is necessary to first understand how environmental factors affect their expression and success. We used otolith 87Sr/86Sr in adult Chinook salmon (Oncorhynchus tshawytcha) returning to the Stanislaus River in the California Central Valley (USA) to reconstruct the sizes at which they outmigrated as juveniles in a wetter (2000) and drier (2003) year. We compared rotary screw trap-derived estimates of outmigrant timing, abundance and size with those reconstructed in the adults from the same cohort. This allowed us to estimate the relative survival and contribution of migratory phenotypes (fry, parr, smolts) to the adult spawning population under different flow regimes. Juvenile abundance and outmigration behavior varied with hydroclimatic regime, while downstream survival appeared to be driven by size- and time-selective mortality. Although fry survival is generally assumed to be negligible in this system, >20% of the adult spawners from outmigration year 2000 had outmigrated as fry. In both years, all three phenotypes contributed to the spawning population, however their relative proportions differed, reflecting greater fry contributions in the wetter year (23% vs. 10%) and greater smolt contributions in the drier year (13% vs. 44%). These data demonstrate that the expression and success of migratory phenotypes vary with hydrologic regime, emphasizing the importance of maintaining diversity in a changing climate.
The phenomenon of thermal diffusion (mass diffusion driven by a temperature gradient, known as the Ludwig-Soret effect) has been investigated for over 150 years, but an understanding of its underlying physical basis remains elusive. A significant hurdle in studying thermal diffusion has been the difficulty of characterizing it. Extensive experiments over the past century have established that the Soret coefficient, S(T) (a single parameter that describes the steady-state result of thermal diffusion), is highly sensitive to many factors. This sensitivity makes it very difficult to obtain a robust characterization of thermal diffusion, even for a single material. Here we show that for thermal diffusion experiments that span a wide range in composition and temperature, the difference in S(T) between isotopes of diffusing elements that are network modifiers (iron, calcium and magnesium) is independent of the composition and temperature. On the basis of this finding, we propose an additive decomposition for the functional form of S(T) and argue that a theoretical approach based on local thermodynamic equilibrium holds promise for describing thermal diffusion in silicate melts and other complex solutions. Our results lead to a simple and robust framework for characterizing isotope fractionation by thermal diffusion in natural and synthetic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.