Using baseline (ages 9–10) and two-year follow-up (ages 11–12) data from monozygotic and dizygotic twins enrolled in the longitudinal Adolescent Brain Cognitive DevelopmentSM Study, we investigated the genetic and environmental contributions to microstructure and volume of nine subcortical gray matter regions. Microstructure was assessed using diffusion MRI data analyzed using restriction spectrum imaging (RSI) and diffusion tensor imaging (DTI) models. The highest heritability estimates (estimate [95% confidence interval]) for microstructure were found using the RSI model in the pallidum (baseline: 0.859 [0.818, 0.889], follow-up: 0.835 [0.787, 0.871]), putamen (baseline: 0.859 [0.819, 0.889], follow-up: 0.874 [0.838, 0.902]), and thalamus (baseline: 0.855 [0.814, 0.887], follow-up: 0.819 [0.769, 0.857]). For volumes the corresponding regions were the caudate (baseline: 0.831 [0.688, 0.992], follow-up: 0.848 [0.701, 1.011]) and putamen (baseline: 0.906 [0.875, 0.914], follow-up: 0.906 [0.885, 0.923]). The subcortical regions displayed high genetic stability (rA = 0.743–1.000) across time and exhibited unique environmental correlations (rE = 0.194–0.610). Individual differences in both gray matter microstructure and volumes can be largely explained by additive genetic effects in this sample.
Using baseline (ages 9-10) and two-year follow-up (ages 11-12) data from monozygotic and dizygotic twins enrolled in the longitudinal Adolescent Brain and Cognitive DevelopmentSM Study, we investigated the genetic and environmental contributions to microstructure and volume of nine subcortical gray matter regions. Microstructure was assessed using diffusion MRI data analyzed using restriction spectrum imaging (RSI) and diffusion tensor imaging (DTI) models. The highest heritability estimates for microstructure were found using the RSI model in the pallidum (0.862±0.037), putamen (0.845±0.041), and thalamus (0.849±0.040). For volumes the corresponding regions were the brainstem (0.880±0.026), caudate (0.881±0.027) and putamen (0.870±0.030). No significant evidence of contributions of the common environment or changes in the contributions with development were observed. Individual differences in both gray matter microstructure and volumes can be largely explained by additive genetic effects in this sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.