We present evidence of increasing persistence in daily precipitation in the northeastern United States that suggests that global circulation changes are affecting regional precipitation patterns. Meteorological data from 222 stations in 10 northeastern states are analyzed using Markov chain parameter estimates to demonstrate that a significant mode of precipitation variability is the persistence of precipitation events. We find that the largest region‐wide trend in wet persistence (i.e., the probability of precipitation in 1 day and given precipitation in the preceding day) occurs in June (+0.9% probability per decade over all stations). We also find that the study region is experiencing an increase in the magnitude of high‐intensity precipitation events. The largest increases in the 95th percentile of daily precipitation occurred in April with a trend of +0.7 mm/d/decade. We discuss the implications of the observed precipitation signals for watershed hydrology and flood risk.
The Lake Champlain basin is a critical ecological and socioeconomic resource of the northeastern United States and southern Quebec, Canada. While general circulation models (GCMs) provide an overview of climate change in the region, they lack the spatial and temporal resolution necessary to fully anticipate the effects of rising global temperatures associated with increasing greenhouse gas concentrations. Observed trends in precipitation and temperature were assessed across the Lake Champlain basin to bridge the gap between global climate change and local impacts. Future shifts in precipitation and temperature were evaluated as well as derived indices, including maple syrup production, days above 32.28C (908F), and snowfall, relevant to managing the natural and human environments in the region. Four statistically downscaled, biascorrected GCM simulations were evaluated from the Coupled Model Intercomparison Project phase 5 (CMIP5) forced by two representative concentration pathways (RCPs) to sample the uncertainty in future climate simulations. Precipitation is projected to increase by between 9.1 and 12.8 mm yr 21 decade 21 during the twenty-first century while daily temperatures are projected to increase between 0.438 and 0.498C decade 21 . Annual snowfall at six major ski resorts in the region is projected to decrease between 46.9% and 52.4% by the late twenty-first century. In the month of July, the number of days above 32.28C in Burlington, Vermont, is projected to increase by over 10 days during the twenty-first century.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.