SUMMARY The sparse activity of hippocampal dentate gyrus (DG) granule cells (GCs) is thought to be critical for cognition and behavior, whereas excessive DG activity may contribute to disorders such as temporal lobe epilepsy (TLE). Glutamatergic mossy cells (MCs) of the DG are potentially critical to normal and pathological functions of the DG because they can regulate GC activity through innervation of GCs or indirectly through GABAergic neurons. Here, we test the hypothesis that MC excitation of GCs is normally weak, but under pathological conditions, MC excitation of GCs is dramatically strengthened. We show that selectively inhibiting MCs during severe seizures reduced manifestations of those seizures, hippocampal injury, and chronic epilepsy. In contrast, selectively activating MCs was pro-convulsant. Mechanistic in vitro studies using optogenetics further demonstrated the unanticipated ability of MC axons to excite GCs under pathological conditions. These results demonstrate an excitatory and epileptogenic effect of MCs in the DG.
The dentate gyrus (DG) and its primary cell type, the granule cell (GC), are thought to be critical to many cognitive functions. A major neuronal subtype of the DG is the hilar mossy cell (MC). MCs have been considered to play an important role in cognition, but in vivo studies to understand the activity of MCs during cognitive tasks are challenging because the experiments usually involve trauma to the overlying hippocampus or DG, which kills hilar neurons. In addition, restraint typically occurs, and MC activity is reduced by brief restraint stress. Social isolation often occurs and is potentially confounding. Therefore, we used c-fos protein expression to understand when MCs are active in vivo in socially housed adult C57BL/6 mice in their home cage. We focused on c-fos protein expression after animals explored novel objects, based on previous work which showed that MCs express c-fos protein readily in response to a novel housing location. Also, MCs are required for the training component of the novel object location task and novelty-encoding during a food-related task. GluR2/3 was used as a marker of MCs. The results showed that MC c-fos protein is greatly increased after exposure to novel objects, especially in ventral DG. We also found that novel objects produced higher c-fos levels than familiar objects. Interestingly, a small subset of neurons that did not express GluR2/3 also increased c-fos protein after novel object exposure. In contrast, GCs appeared relatively insensitive. The results support a growing appreciation of the role of the DG in novelty detection and novel object recognition, where hilar neurons and especially MCs are very sensitive.
The dentate gyrus (DG) of the hippocampus is important for cognition and behavior. However, the circuits underlying these functions are unclear. DG mossy cells (MCs) are potentially important because of their excitatory synapses on the primary cell type, granule cells (GCs). However, MCs also activate GABAergic neurons, which inhibit GCs. We used viral delivery of designer receptors exclusively activated by designer drugs (DREADDs) in mice to implement a gain-and loss-of-function study of MCs in diverse behaviors. Using this approach, manipulations of MCs could bidirectionally regulate behavior. The results suggest that inhibiting MCs can reduce anxiety-like behavior and improve cognitive performance. However, not all cognitive or anxiety-related behaviors were influenced, suggesting specific roles of MCs in some, but not all, types of cognition and anxiety. Notably, several behaviors showed sex-specific effects, with females often showing more pronounced effects than the males. We also used the immediate early gene c-Fos to address whether DREADDs bidirectionally regulated MC or GC activity. We confirmed excitatory DREADDs increased MC c-Fos. However, there was no change in GC c-Fos, consistent with MC activation leading to GABAergic inhibition of GCs. In contrast, inhibitory DREADDs led to a large increase in GC c-Fos, consistent with a reduction in MC excitation of GABAergic neurons, and reduced inhibition of GCs. Together, these results suggest that MCs regulate anxiety and cognition in specific ways. We also raise the possibility that cognitive performance may be improved by reducing anxiety.
Glutamatergic hilar mossy cells (MCs) have axons that terminate both near and far from their cell body but stay within the DG, making synapses primarily in the molecular layer. The long‐range axons are considered the primary projection, and extend throughout the DG ipsilateral to the soma, and project to the contralateral DG. The specificity of MC axons for the inner molecular layer (IML) has been considered to be a key characteristic of the DG. In the present study, we made the surprising finding that dorsal MC axons are an exception to this rule. We used two mouse lines that allow for Cre‐dependent viral labeling of MCs and their axons: dopamine receptor D2 (Drd2‐Cre) and calcitonin receptor‐like receptor (Crlr‐Cre). A single viral injection into the dorsal DG to label dorsal MCs resulted in labeling of MC axons in both the IML and middle molecular layer (MML). Interestingly, this broad termination of dorsal MC axons occurred throughout the septotemporal DG. In contrast, long‐range axons of ventral MCs terminated in the IML, consistent with the literature. Taken together, these results suggest that dorsal and ventral MCs differ significantly in their axonal projections. Since MC projections in the ML are thought to terminate primarily on GCs, the results suggest a dorsal–ventral difference in MC activation of GCs. The surprising difference in dorsal and ventral MC projections should therefore be considered when evaluating dorsal–ventral differences in DG function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.