Endothelial cell (EC) aging and senescence are key events in atherogenesis and cardiovascular disease development. Age-associated changes in the local mechanical environment of blood vessels have also been linked to atherosclerosis. However, the extent to which cell senescence affects mechanical forces generated by the cell is unclear. In this study, we sought to determine whether EC senescence increases traction forces through age-associated changes in the glycocalyx and antioxidant regulator deacetylase Sirtuin1 (SIRT1), which is downregulated during aging. Traction forces were higher in cells that had undergone more population doublings and changes in traction force were associated with altered actin localization. Older cells also had increased actin filament thickness. Depletion of heparan sulfate in young ECs elevated traction forces and actin filament thickness, while addition of heparan sulfate to the surface of aged ECs by treatment with angiopoietin-1 had the opposite effect. While inhibition of SIRT1 had no significant effect on traction forces or actin organization for young cells, activation of SIRT1 did reduce traction forces and increase peripheral actin in aged ECs. These results show that EC senescence increases traction forces and alters actin localization through changes to SIRT1 and the glycocalyx.
Purpose We sought to determine the effect of stress-induced senescence on the permeability to albumin of aging endothelial progenitor cells. Methods Human umbilical cord blood derived endothelial cells (hCB-ECs) and human aortic endothelial cells (HAECs) were treated with 200 μM H2O2 and permeability to FITC-bovine serum albumin was measured. Some samples were subsequently treated with 100μM 8-pCPT-2'-O-Me-cAMP, a cAMP analog that activates the Epac1-Rap1 pathway. Cell proliferation was measured with the EdU assay. Phase contrast, and immunofluorescence images were taken to observe morphological changes in cells after exposure to H2O2. Results hCB-ECs exposed to H2O2 exhibited a significant increase in permeability, but their response differed from the HAECs. Low passage hCB-ECs had a permeability increase of about 82% (p<0.01) compared to aged cells which had a permeability increase of about 37% (p<0.05). This increase in permeability was reduced by treating the cells with 100 μM 8-pCPT-2'-O-Me-cAMP. The younger cells exhibited a significant decrease in proliferation after being subjected to various concentrations of H2O2 whereas the aged cells exhibited a more gradual decrease in the percent of cells in S-phase. These changes also correlated with changes in cell morphology and junction staining. When placed back in the original media, the morphology and permeability of the hCB-ECs returned to the control condition, while the HAECs did not. Conclusions The permeability of low and high passage hCB-ECs and HAECs initially increases in response to oxidative stress. hCB-ECs, but not HAECs, were able to recover from the stress 24 hours later. Early passage hCB-ECs were more susceptible to exogenous H2O2 than late passage hCB-ECs. The increase in permeability of hCB-ECs to H2O2 also correlated with decreased cell proliferation and changes in cell junctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.