At least two different routes lead to conical structures on laser ablated polymer surfaces. These were investigated by studying laser ablation on the surfaces of different classes of polymers. Cones appeared readily in strongly absorbing polymers such as poly(ethylene terephthalate) (PET) and polyimide (PI), but only within narrow laser parameters in nylon 6, and rarely in poly(chlorotrifluoroethylene), the last two being weak ultraviolet (UV) absorbers. Self-assembled, close-packed cones occurred in PET, in which heat generated due to absorbed laser energy creates a thin, chemically stable, viscoelastic, highly compliant layer (above the glass transition temperature). Surface structure in such polymers evolves from nodules through donuts into ripples and finally to cones as the energy deposited per unit area on the surface (total fluence) is increased using a combination of single pulse fluence and number of pulses. A phase transition from a ripple phase to a cone phase is thought to occur as the thickness of the viscoelastic surface layer increases above a critical value. Cones began to appear from almost the beginning of the irradiation process at random locations in PI, a polymer whose surface irreversibly turns into a hard solid upon exposure to either or both UV and heat. It is proposed that the radiation hardened spots serve as nuclei, a cone “grows” out of this as the material surrounding this nuclei is ablated. The initial sparse occurrence of cones in PI-like polymers, and the increase in their number density with total fluence until the surface is densely packed with cones can be explained by a nucleation and growth model.
BackgroundWe have evaluated the antimicrobial properties of Ag-based nanoparticles (Nps) using two solid phase bioassays and found that 10-20 μL of 0.3-3 μM keratin-stabilized Nps (depending on the starting bacterial concentration = CI) completely inhibited the growth of an equivalent volume of ca. 103 to 104 colony forming units per mL (CFU mL-1) Staphylococcus aureus, Salmonella Typhimurium, or Escherichia coli O157:H7 on solid surfaces. Even after one week at 37°C on solid media, no growth was observed. At lower Np concentrations (= [Np]s), visible colonies were observed but they eventually ceased growing.ResultsTo further study the physiology of this growth inhibition, we repeated these experiments in liquid phase by observing microbial growth via optical density at 590 nm (OD) at 37°C in the presence of a [Np] = 0 to 10-6 M. To extract various growth parameters we fit all OD[t] data to a common sigmoidal function which provides measures of the beginning and final OD values, a first-order rate constant (k), as well as the time to calculated 1/2-maximal OD (tm) which is a function of CI, k, as well as the microbiological lag time (T).Performing such experiments using a 96-well microtitre plate reader, we found that growth always occurred in solution but tm varied between 7 (controls; CI = 8 × 103 CFU mL-1) and > 20 hrs using either the citrate-([Np] ~ 3 × 10-7 M) or keratin-based ([Np] ~ 10-6 M) Nps and observed that {∂tm/∂ [Np]}citrate ~ 5 × 107 and {∂tm/∂ [Np]}keratin ~ 107 hr·L mol-1. We also found that there was little effect of Nps on S. aureus growth rates which varied only between k = 1.0 and 1.2 hr-1 (1.1 ± 0.075 hr-1). To test the idea that the Nps were changing the initial concentration (CI) of bacteria (i.e., cell death), we performed probabilistic calculations assuming that the perturbations in tm were due to CI alone. We found that such large perturbations in tm could only come about at a CI where the probability of any growth at all was small. This result indicates that much of the Np-induced change in tm was due to a greatly increased T (e.g., from ca. 1 to 15-20 hrs). For the solid phase assays we hypothesize that the bacteria eventually became non-culturable since they were inhibited from undergoing further cell division (T > many days).ConclusionWe propose that the difference between the solid and liquid system relates to the obvious difference in the exposure, or residence, time of the Nps with respect to the bacterial cell membrane inasmuch as when small, Np-inhibited colonies were selected and streaked on fresh (i.e., no Nps present) media, growth proceeded normally: e.g., a small, growth-inhibited colony resulted in a plateful of typical S. aureus colonies when streaked on fresh, solid media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.