Characterization of the cellular participants in tissue immune responses is crucial to understanding infection, cancer, autoimmunity, allergy, graft rejection and other immunological processes. previous reports indicate that leukocytes in lung vasculature fail to be completely removed by perfusion. several studies suggest that intravascular staining may discriminate between tissue-localized and blood-borne cells in the mouse lung. Here we outline a protocol for the validation and use of intravascular staining to define innate and adaptive immune cells in mice. We demonstrate application of this protocol to leukocyte analyses in many tissues and we describe its use in the contexts of lymphocytic choriomeningitis virus and Mycobacterium tuberculosis infections or solid tumors. Intravascular staining and organ isolation usually takes 5–30 min per mouse, with additional time required for any subsequent leukocyte isolation, staining and analysis. In summary, this simple protocol should help enable interpretable analyses of tissue immune responses.
Memory B cells formed in response to microbial antigens provide immunity to later infections; however, the inability to detect rare endogenous antigen-specific cells limits current understanding of this process. Using an antigen-based technique to enrich these cells, we found that immunization with a model protein generated B memory cells that expressed isotype-switched immunoglobulins (swIg) or retained IgM. The more numerous IgM+ cells were longer lived than the swIg+ cells. However, swIg+ memory cells dominated the secondary response due to the capacity to become activated in the presence of neutralizing serum Ig. Thus, we propose that memory relies on swIg+ cells until they disappear and serum Ig falls to a low level, in which case memory resides with durable IgM+ reserves.
SUMMARY
Listeria monocytogenes infection generates T helper-1 (Th1) effector memory cells and CC chemokine receptor 7 (CCR7)+ cells resembling central memory cells. We tracked endogenous L. monocytogenes-specific CD4+ T cells to determine how these memory cells are formed. Two effector cell populations were already present several days after infection. One highly expressed the T-bet transcription factor and produced Th1 memory cells in an interleukin-2 (IL-2) receptor-dependent fashion. The other resided in the T cell areas, expressed CCR7 and CXC chemokine receptor 5 (CXCR5), and like follicular helper cells depended on the Bcl6 transcription factor and inducible costimulator ligand on B cells. The CCR7+ CXCR5+ effector cells produced similar memory cells that generated diverse effector cell populations in a secondary response. Thus, Th1 effector memory and follicular helper-like central memory cells are produced from early effector cell populations that diverge in response to signals from the IL-2 receptor, Bcl6, and B cells.
SUMMARY
A naïve CD4+ T cell population specific for a microbial peptide:major histocompatibility complex II ligand (p:MHCII) typically consists of about 100 cells, each with a different T cell receptor (TCR). Following infection, this population produces a consistent ratio of effector cells that activate microbicidal functions of macrophages or help B cells make antibodies. We studied the mechanism that underlies this division of labor by tracking the progeny of single naïve T cells. Different naïve cells produced distinct ratios of macrophage and B cell helpers but yielded the characteristic ratio when averaged together. The effector cell pattern produced by a given naïve cell correlated with the TCR-p:MHCII dwell time or the amount of p:MHCII. Thus, the consistent production of effector cell subsets by a polyclonal population of naïve cells results from averaging the diverse behaviors of individual clones, which are instructed in part by the strength of TCR signaling.
Early IgM+ and switched Ig+ memory B cells develop from a germinal center (GC)–independent pathway, whereas late switched memory cells are GC dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.