While evolutionary computation and evolutionary robotics take inspiration from nature, they have long focused mainly on problems of performance optimization. Yet, evolution in nature can be interpreted as more nuanced than a process of simple optimization. In particular, natural evolution is a divergent search that optimizes locally within each niche as it simultaneously diversifies. This tendency to discover both quality and diversity at the same time differs from many of the conventional algorithms of machine learning, and also thereby suggests a different foundation for inferring the approach of greatest potential for evolutionary algorithms. In fact, several recent evolutionary algorithms called quality diversity (QD) algorithms (e.g., novelty search with local competition and MAP-Elites) have drawn inspiration from this more nuanced view, aiming to fill a space of possibilities with the best possible example of each type of achievable behavior. The result is a new class of algorithms that return an archive of diverse, high-quality behaviors in a single run. The aim in this paper is to study the application of QD algorithms in challenging environments (in particular complex mazes) to establish their best practices for ambitious domains in the future. In addition to providing insight into cases when QD succeeds and fails, a new approach is investigated that hybridizes multiple views of behaviors (called behavior characterizations) in the same run, which succeeds in overcoming some of the challenges associated with searching for QD with respect to a behavior characterization that is not necessarily sufficient for generating both quality and diversity at the same time.
In contrast to the conventional role of evolution in evolutionary computation (EC) as an optimization algorithm, a new class of evolutionary algorithms has emerged in recent years that instead aim to accumulate as diverse a collection of discoveries as possible, yet where each variant in the collection is as fit as it can be. Often applied in both neuroevolution and morphological evolution, these new quality diversity (QD) algorithms are particularly well-suited to evolution's inherent strengths, thereby offering a promising niche for EC within the broader field of machine learning. However, because QD algorithms are so new, until now no comprehensive study has yet attempted to systematically elucidate their relative strengths and weaknesses under different conditions. Taking a first step in this direction, this paper introduces a new benchmark domain designed specifically to compare and contrast QD algorithms. It then shows how the degree of alignment between the measure of quality and the behavior characterization (which is an essential component of all QD algorithms to date) impacts the ultimate performance of different such algorithms. The hope is that this initial study will help to stimulate interest in QD and begin to unify the disparate ideas in the area.
Natural brains effectively integrate multiple sensory modalities and act upon the world through multiple effector types. As researchers strive to evolve more sophisticated neural controllers, confronting the challenge of multimodality is becoming increasingly important. As a solution, this paper presents a principled new approach to exploiting indirect encoding to incorporate multimodality based on the HyperNEAT generative neuroevolution algorithm called the multi-spatial substrate (MSS). The main idea is to place each input and output modality on its own independent plane. That way, the spatial separation of such groupings provides HyperNEAT an a priori hint on which neurons are associated with which that can be exploited from the start of evolution. To validate this approach, the MSS is compared with more conventional approaches to HyperNEAT substrate design in a multiagent domain featuring three input and two output modalities. The new approach both significantly outperforms conventional approaches and reduces the creative burden on the user to design the layout of the substrate, thereby opening formerly prohibitive multimodal problems to neuroevolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.