OpenAI's Gym library contains a large, diverse set of environments that are useful benchmarks in reinforcement learning, under a single elegant Python API (with tools to develop new compliant environments) . The introduction of this library has proven a watershed moment for the reinforcement learning community, because it created an accessible set of benchmark environments that everyone could use (including wrapper important existing libraries), and because a standardized API let RL learning methods and environments from anywhere be trivially exchanged. This paper similarly introduces PettingZoo, a library of diverse set of multi-agent environments under a single elegant Python API, with tools to easily make new compliant environments.
In reinforcement learning, wrappers are universally used to transform the information that passes between a model and an environment. Despite their ubiquity, no library exists with reasonable implementations of all popular preprocessing methods. This leads to unnecessary bugs, code inefficiencies, and wasted developer time. Accordingly we introduce SuperSuit, a Python library that includes all popular wrappers, and wrappers that can easily apply lambda functions to the observations/actions/reward. It's compatible with the standard Gym environment specification, as well as the PettingZoo specification for multi-agent environments. The library is available at https://github.com/PettingZoo-Team/SuperSuit, and can be installed via pip.
The Arcade Learning Environment ("ALE") is a widely used library in the reinforcement learning community that allows easy programmatic interfacing with Atari 2600 games, via the Stella emulator. We introduce a publicly available extension to the ALE that extends its support to multiplayer games and game modes. This interface is additionally integrated with PettingZoo to allow for a simple Gym-like interface in Python to interact with these games.
Partially Observable Stochastic Games (POSGs), are the most general model of games used in Multi-Agent Reinforcement Learning (MARL), modeling actions and observations as happening sequentially for all agents. We introduce Agent Environment Cycle Games (AEC Games), a model of games based on sequential agent actions and observations. AEC Games can be thought of as sequential versions of POSGs, and we prove that they are equally powerful. We argue conceptually and through case studies that the AEC games model is useful in important scenarios in MARL for which the POSG model is not well suited. We additionally introduce "cyclically expansive curriculum learning," a new MARL curriculum learning method motivated by the AEC games model. It can be applied "for free, " and experimentally we show this technique to achieve up to 35.1% more total reward on average.
We introduce a new mathematical model of multi-agent reinforcement learning, the Multi-Agent Informational Learning Process or "MAILP" model. The model is based on the notion that agents have policies for a certain amount of information, models how this information iteratively evolves and propagates through many agents. This model is very general, and the only meaningful assumption made is that learning for individual agents progressively slows over time. * Equal contribution Preprint. Under review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.