Phosphodiesterases (PDEs) catalyze the hydrolysis of second messengers cAMP and cGMP in regulating many important cellular signals and have been recognized as important drug targets. Experimentally, a range of specificity/selectivity toward cAMP and cGMP is well-known for the individual PDE families. The study reported here reveals that PDEs might also exhibit selectivity toward conformations of the endogenous substrates cAMP and cGMP. Molecular dynamics simulations and free energy study have been applied to study the binding of the cAMP torsional conformers about the glycosyl bond in PDE10A2. The computational results elucidated that PDE10A2 is energetically more favorable in complex with the syn cAMP conformer (as reported in the crystal structure) and the binding of anti cAMP to PDE10A2 would lead to either a nonreactive configuration or significant perturbation on the catalytic pocket of the enzyme. This experimentally inaccessible information provides important molecular insights for the development of effective PDE10 ligands.
Gaussian-3 (G3) calculations have been carried out to examine the photodissociation of propylene sulfide at
193 nm. On the basis of the good agreements between the G3 results and experimental measurements, three
dissociation channels involving transition structures have been established. The sulfur-containing products of
these three dissociation reactions are C2H3S, HS, and H2S. Moreover, two channels leading to the loss of
sulfur atom are observed experimentally and confirmed computationally. Furthermore, some additional
elimination processes, also leading to the neutral fragments C3H6 and S(1D) or S(3P), and having exceedingly
high experimental reaction barriers, are observed. These reactions are not likely to take place at the ground
state of propylene sulfide. The experimentally measured high reaction barriers are in very good accord with
our calculated excitation energies of propylene sulfide.
Early studies strongly implied that the specificity of cyclic nucleotide phosphodiesterases (PDEs) toward its endogenous substrates can be uniquely determined by the amido orientation of the invariant glutamine locating in the binding pocket of the enzyme. However, recently solved crystal structures of PDE4 (cAMP specific) and PDE10 (dual specific) in the presence of endogenous substrates have revealed that their invariant glutamine orientations are very similar despite exhibiting different substrate specificities proven physiologically. To understand this subtle specificity issue in the PDE family, here several experimentally inaccessible PDE-substrate complex models have been studied computationally, and the results are juxtaposed and compared in detail. Modeling results show that PDE10 in fact favors cAMP energetically but still can bind to cGMP owing to the robust hydrogen-bond network in the vicinity of the invariant glutamine side chain. PDE4 fails to accommodate cGMP is correlated to the weakening of this same hydrogen-bond network but not owing to any steric strain in the binding pocket. An Asn residue in the binding pocket of PDE4 has enhanced the specificity of the binding to cAMP sideway as observed in our computer simulation. Further to the previously studied syn- versus anti-conformational specificity of cAMP in PDE10, the unexpected substrate-binding mode in PDE10 versus PDE4 as reported here strongly suggested that there are remaining uncertainties in the substrate orientation and recognition mechanism in the PDE families. The molecular details of the binding pocket observed in this study provide hints for more optimal PDE4 and PDE10 inhibitor design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.